Abstract
We introduce the topical relevance model (TRLM) as a generalization of the standard relevance model (RLM). The TRLM alleviates the limitations of the RLM by exploiting the multi-topical structure of pseudo-relevant documents. In TRLM, intra-topical document and query term co-occurrences are favoured, whereas the inter-topical ones are down-weighted. The multi-topical nature of pseudo-relevant documents results from the multi-faceted nature of the information need typically expressed in a query. The TRLM provides a framework to estimate a set of underlying hypothetical relevance models for each such aspect of the information need. Experimental results show that the TRLM significantly outperforms the RLM for ad-hoc and patent prior art search.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In: SIGIR 1996, pp. 4–11. ACM (1996)
Lavrenko, V., Croft, B.W.: Relevance based language models. In: Proceedings of SIGIR 2001, pp. 120–127. ACM (2001)
Takaki, T., Fujii, A., Ishikawa, T.: Associative document retrieval by query subtopic analysis and its application to invalidity patent search. In: Proceedings of CIKM 2004, pp. 399–405 (2004)
Piroi, F., Lupu, M., Hanbury, A., Zenz, V.: CLEF-IP 2011: Retrieval in the intellectual property domain. In: Proceedings of CLEF 2011 (2011)
Robertson, S.E., Sparck Jones, K.: Relevance weighting of search terms, pp. 143–160. Taylor Graham Publishing (1988)
Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis, Center of Telematics and Information Technology, AE Enschede (2000)
Lv, Y., Zhai, C.: Positional relevance model for pseudo-relevance feedback. In: Proceedings of SIGIR 2010, pp. 579–586. ACM (2010)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Wei, X., Croft, W.B.: LDA-based document models for ad-hoc retrieval. In: Proceedings of SIGIR 2006, pp. 178–185. ACM (2006)
Lang, H., Metzler, D., Wang, B., Li, J.T.: Improved latent concept expansion using hierarchical markov random fields. In: Proceedings of CIKM 2010, pp. 249–258 (2010)
Griffiths, T.L., Steyvers, M.: Finding scientific topics. PNAS 101, 5228–5235 (2004)
Magdy, W., Leveling, J., Jones, G.J.F.: Exploring Structured Documents and Query Formulation Techniques for Patent Retrieval. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mandl, T., Mostefa, D., Peñas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 410–417. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ganguly, D., Leveling, J., Jones, G.J.F. (2012). Topical Relevance Model. In: Hou, Y., Nie, JY., Sun, L., Wang, B., Zhang, P. (eds) Information Retrieval Technology. AIRS 2012. Lecture Notes in Computer Science, vol 7675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35341-3_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-35341-3_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35340-6
Online ISBN: 978-3-642-35341-3
eBook Packages: Computer ScienceComputer Science (R0)