Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automation in Computer-Aided Cryptography: Proofs, Attacks and Designs

  • Conference paper
Certified Programs and Proofs (CPP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7679))

Included in the following conference series:

  • 666 Accesses

Abstract

CertiCrypt [3] and EasyCrypt [2] are machine-checked frameworks for proving the security of cryptographic constructions. Both frameworks adhere to the gamebased approach [9,6,8] to provable security [7], but revisit its realization from a formal verification pespective. More specifically, CertiCrypt and EasyCrypt use a probabilistic programming language pWHILE for expressing cryptographic constructions, security properties, and computational assumptions, and a probabilistic relational Hoare logic pRHL for justifying reasonings in cryptographic proofs. While both tools coincide in their foundations, they differ in their underlying technologies: CertiCrypt is implemented as a set of libraries in the Coq proof assistant, whereas EasyCrypt uses a verification condition generator for pRHL in combination with off-the-shelf SMT solvers and automated theorem provers. Over the last six years, we have used both tools to verify prominent examples of public-key encryption schemes, modes of operation, signature schemes, hash function designs, zero-knowledge proofs. Recently, we have also used both tools to certify the output of a zero-knowledge compiler [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, J.B., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S., Béguelin, S.Z.: Full proof cryptography: Verifiable compilation of efficient zero-knowledge protocols. In: 19th ACM Conference on Computer and Communications Security, CCS 2012. ACM (2012)

    Google Scholar 

  2. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-Aided Security Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

    Google Scholar 

  3. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)

    Google Scholar 

  4. Barthe, G., Pointcheval, D., Béguelin, S.Z.: Verified security of redundancy-free encryption from Rabin and RSA. In: 19th ACM Conference on Computer and Communications Security, CCS 2012. ACM (to appear, 2012)

    Google Scholar 

  5. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive, Report 2005/181 (2005)

    Google Scholar 

  9. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barthe, G., Grégoire, B., Kunz, C., Lakhnech, Y., Zanella Béguelin, S. (2012). Automation in Computer-Aided Cryptography: Proofs, Attacks and Designs. In: Hawblitzel, C., Miller, D. (eds) Certified Programs and Proofs. CPP 2012. Lecture Notes in Computer Science, vol 7679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35308-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35308-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35307-9

  • Online ISBN: 978-3-642-35308-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics