Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing NLP Tasks by the Use of a Recent Neural Incremental Clustering Approach Based on Cluster Data Feature Maximization

  • Conference paper
Advances in Self-Organizing Maps

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 198))

Abstract

The IGNGF (Incremental Growing Neural Gas with Feature maximisation) method is a recent neural clustering method in which the use of a standard distance measure for determining a winner is replaced in IGNGF by cluster feature maximization. One main advantage of this method as compared to concurrent methods is that the maximized features used during learning can also be exploited in a final step for accurately labeling the resulting clusters. In this paper, we apply this method to the unsupervised classification of French verbs. We evaluate the obtained clusters (i.e., verb classes) in three different ways. The first one relies on an usual gold standard, the second one on unsupervised cluster quality indexes and the last one on a qualitative analysis. Our experiment illustrates that, conversely to former approaches for automatically acquiring verb classes, IGNGF method permits to produce relevant verb classes and to accurately associate the said classes with an explicit characterisation of the syntactic and semantic properties shared by the classes elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lamirel, J.C., Mall, R., Cuxac, P., Safi, G.: Variations to incremental growing neural gas algorithm based on label maximization. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 956–965 (2011)

    Google Scholar 

  2. Kipper, K., Dang, H.T., Palmer, M.: Class-based construction of a verb lexicon. In: AAAI/IAAI, pp. 691–696 (2000)

    Google Scholar 

  3. Dorr, B.J.: Large-scale dictionary construction for foreign language tutoring and interlingual machine translation. Machine Translation 12(4), 271–325 (1997)

    Article  Google Scholar 

  4. Prescher, D., Riezler, S., Rooth, M.: Using a probabilistic class-based lexicon for lexical ambiguity resolution. In: 18th International Conference on Computational Linguistics, Saarbrucken, Germany, pp. 649–655 (2000)

    Google Scholar 

  5. Korhonen, A.: Semantically motivated subcategorization acquisition. In: ACL Workshop on Unsupervised Lexical Acquisition, Philadelphia (2002)

    Google Scholar 

  6. Sun, L., Korhonen, A., Poibeau, T., Messiant, C.: Investigating the cross-linguistic potential of VerbNet-style classification. In: Proceedings of the 23rd International Conference on Computational Linguistics, COLING 2010, pp. 1056–1064. Association for Computational Linguistics, Stroudsburg (2010)

    Google Scholar 

  7. Schulte im Walde, S.: Experiments on the automatic induction of german semantic verb classes. Computational Linguistics 32(2), 159–194 (2006)

    Article  Google Scholar 

  8. Kipper Schuler, K.: VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon. PhD thesis, University of Pennsylvania (2006)

    Google Scholar 

  9. Martinetz, T., Schulten, K.: A ”Neural-Gas” Network Learns Topologies. Artificial Neural Networks I, 397–402 (1991)

    Google Scholar 

  10. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems 7, pp. 625–632 (1995)

    Google Scholar 

  11. Prudent, Y., Ennaji, A.: An incremental growing neural gas learns topologies. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 2, pp. 1211–1216 (2005)

    Google Scholar 

  12. Attik, M., Al Shehabi, S., Lamirel, J.C.: Clustering Quality Measures for Data Samples with Multiple Labels. In: Databases and Applications, pp. 58–65 (2006)

    Google Scholar 

  13. Ghribi, M., Cuxac, P., Lamirel, J.C., Lelu, A.: Mesures de qualité de clustering de documents: prise en compte de la distribution des mots clés. In: Béchet, N. (ed.) Évaluation des Méthodes d’Extraction de Connaissances dans les Données, EvalECD 2010, Hammamet, Tunisie, Fatiha Saïs, pp. 15–28 (January 2010)

    Google Scholar 

  14. van den Eynde, K., Mertens, P.: La valence : l’approche pronominale et son application au lexique verbal. Journal of French Language Studies 13, 63–104 (2003)

    Article  Google Scholar 

  15. Kupść, A., Abeillé, A.: Growing TreeLex. In: Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 28–39. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Gross, M.: Méthodes en syntaxe. Hermann, Paris (1975)

    Google Scholar 

  17. Falk, I., Gardent, C., Lamirel, J.C.: Classifying French Verbs Using French and English Lexical Resources. In: ACL, pp. 207–214 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Lamirel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lamirel, JC., Falk, I., Gardent, C. (2013). Enhancing NLP Tasks by the Use of a Recent Neural Incremental Clustering Approach Based on Cluster Data Feature Maximization. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35230-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35229-4

  • Online ISBN: 978-3-642-35230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics