Nothing Special   »   [go: up one dir, main page]

Skip to main content

Continuity of Defuzzification on L2 Space for Optimization of Fuzzy Control

  • Conference paper
Active Media Technology (AMT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7669))

Included in the following conference series:

Abstract

The purpose of this study is to consider the fuzzy optimal control based on the functional analysis. We used a mathematical approach to compute optimal solutions. The feedback of fuzzy control is evaluated through approximate reasoning using the center of sums defuzzification method or the height method on IF-THEN fuzzy rules. The framework consists of two propositions: To guarantee the convergence of optimal solution, a set of fuzzy membership functions (admissible fuzzy controller) which are selected out of continuous function space is compact metrizable. And assuming approximate reasoning to be a functional on the set of membership functions, its continuity is proved. Then, we show the existence of a fuzzy controller which minimizes (maximizes) the integral performance function of the nonlinear feedback fuzzy system.

This work was supported by JSPS KAKENHI Grant Numbers 24700235, 23730395.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEE 121(12), 1585–1588 (1974)

    Google Scholar 

  2. Mizumoto, M.: Improvement of fuzzy control (IV) - Case by product-sum-gravity method. In: Proc. 6th Fuzzy System Symposium, pp. 9–13 (1990)

    Google Scholar 

  3. Nakamori, Y., Ryoke, M.: Identification of fuzzy prediction models through hyperellipsoidal clustering. IEEE Transactions on Systems, Man and Cybernetics SMC-24(7), 1153–1173 (1994)

    Article  Google Scholar 

  4. Tanaka, K., Sugeno, M.: Stability Analysis of Fuzzy Systems and Construction Procedure for Lyapunov Functions. Transactions of the Japan Society of Mechanical Engineers (C) 58(550), 1766–1772 (1992)

    Article  Google Scholar 

  5. Mitsuishi, T., Wasaki, K., Kawabe, J., Kawamoto, N.P., Shidama, Y.: Fuzzy optimal control in L2 space. In: Proc. 7th IFAC Symposium Artificial Intelligence in Real-Time Control, pp. 173–177 (1998)

    Google Scholar 

  6. Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feedback Control Determined by Product-Sum-Gravity Method. Journal of Nonlinear and Convex Analysis 1(2), 201–211 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Mitsuishi, T., Shidama, Y.: Continuity of Fuzzy Approximate Reasoning and Its Application to Optimization. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 529–538. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Mitsuishi, T., Shidama, Y.: gCompactness of Family of Fuzzy Sets in L2 Space with Application to Optimal Control. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E92-A(4), 952–957 (2009)

    Article  Google Scholar 

  9. Mitsuishi, T.: Continuity of Approximate Reasoning Using Center of Sums Defuzzification Method. In: Proc. of IEEE 35th International Convention of Information Communication Technology, Electronics and Microelectronics MIPRO 2012, pp. 1172–1175 (2012)

    Google Scholar 

  10. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  11. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover Publications, New York (1990)

    MATH  Google Scholar 

  12. Dunford, N., Schwartz, J.T.: Linear Operators Part I: General Theory. John Wiley & Sons, New York (1988)

    MATH  Google Scholar 

  13. Ross, T.J.: Fuzzy Logic With Engineering Application. John Wiley and Sons Ltd., UK (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitsuishi, T., Terashima, T., Shimada, N., Homma, T., Sawada, K., Shidama, Y. (2012). Continuity of Defuzzification on L2 Space for Optimization of Fuzzy Control. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds) Active Media Technology. AMT 2012. Lecture Notes in Computer Science, vol 7669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35236-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35236-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35235-5

  • Online ISBN: 978-3-642-35236-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics