Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting Student Exam’s Scores by Analyzing Social Network Data

  • Conference paper
Active Media Technology (AMT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7669))

Included in the following conference series:

Abstract

In this paper, we propose a novel method for the prediction of a person’s success in an academic course. By extracting log data from the course’s website and applying network analysis methods, we were able to model and visualize the social interactions among the students in a course. For our analysis, we extracted a variety of features by using both graph theory and social networks analysis. Finally, we successfully used several regression and machine learning techniques to predict the success of student in a course. An interesting fact uncovered by this research is that the proposed model has a shown a high correlation between the grade of a student and that of his “best” friend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alspaugh, C.: Identification of some components of computer programming aptitude. Journal for Research in Mathematics Education, 89–98 (1972)

    Google Scholar 

  2. Cottam, J., Menzel, S., Greenblatt, J.: Tutoring for retention. In: Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, pp. 213–218. ACM (2011)

    Google Scholar 

  3. Evans, G., Simkin, M.: What best predicts computer proficiency? Communications of the ACM 32(11), 1322–1327 (1989)

    Article  Google Scholar 

  4. Deckro, R., Woundenberg, H.: Mba admission criteria and academic success. Decision Sciences 8(4), 765–769 (1977)

    Article  Google Scholar 

  5. Cronan, T., Embry, P., White, S.: Identifying factors that influence performance of non-computing majors in the business computer information systems course. Journal of Research on Computing in Education 21(4), 431–446 (1989)

    Google Scholar 

  6. Butcher, D., Muth, W.: Predicting performance in an introductory computer science course. Communications of the ACM 28(3), 263–268 (1985)

    Article  Google Scholar 

  7. Ting, S., Robinson, T.: First-year academic success: A prediction combining cognitive and psychosocial variables for caucasian and african american students. Journal of College Student Development (1998)

    Google Scholar 

  8. Bennedsen, J., Caspersen, M.: Optimists have more fun, but do they learn better? on the influence of emotional and social factors on learning introductory computer science. Computer Science Education 18(1), 1–16 (2008)

    Article  Google Scholar 

  9. Keen, K., Etzkorn, L.: Predicting students’ grades in computer science courses based on complexity measures of teacher’s lecture notes. Journal of Computing Sciences in Colleges 24(5), 44–48 (2009)

    Google Scholar 

  10. Fowler, G., Glorfeld, L.: Predicting aptitude in introductory computing: A classification model. AEDS Journal 14(2), 96–109 (1981)

    Google Scholar 

  11. Petersen, C., Howe, T.: Predicting academic success in introduction to computers. AEDS Journal 12(4), 182–191 (1979)

    Google Scholar 

  12. Konvalina, J., et al.: Identifying factors influencing computer science aptitude and achievement. AEDS Journal 16(2), 106–112 (1983)

    Google Scholar 

  13. Hostetler, T.: Predicting student success in an introductory programming course. ACM SIGCSE Bulletin 15(3), 40–43 (1983)

    Article  Google Scholar 

  14. Campbell, P., McCabe, G.: Predicting the success of freshmen in a computer science major. Communications of the ACM 27(11), 1108–1113 (1984)

    Article  Google Scholar 

  15. Rountree, N., Rountree, J., Robins, A., Hannah, R.: Interacting factors that predict success and failure in a cs1 course. ACM SIGCSE Bulletin 36(4), 101–104 (2004)

    Article  Google Scholar 

  16. Mazlack, L.: Identifying potential to acquire programming skill. Communications of the ACM 23(1), 14–17 (1980)

    Article  Google Scholar 

  17. Allinson, C., Hayes, J.: The cognitive style index: A measure of intuition-analysis for organizational research. Journal of Management Studies 33(1), 119–135 (1996)

    Article  Google Scholar 

  18. Chamillard, A.: Using student performance predictions in a computer science curriculum. ACM SIGCSE Bulletin 38(3), 260–264 (2006)

    Article  Google Scholar 

  19. Christakis, N., Fowler, J.: The spread of obesity in a large social network over 32 years. New England Journal of Medicine 357(4), 370–379 (2007)

    Article  Google Scholar 

  20. Altshuler, Y., Aharony, N., Fire, M., Elovici, Y., Pentland, A.: Incremental learning with accuracy prediction of social and individual properties from mobile-phone data. In: First International Workshop on Wide Spectrum Social Signal Processing (WS3P), Netherlands, Amsterdam (2012)

    Google Scholar 

  21. Eckersley, P.: How Unique Is Your Web Browser? In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fire, M., Katz, G., Elovici, Y., Shapira, B., Rokach, L. (2012). Predicting Student Exam’s Scores by Analyzing Social Network Data. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds) Active Media Technology. AMT 2012. Lecture Notes in Computer Science, vol 7669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35236-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35236-2_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35235-5

  • Online ISBN: 978-3-642-35236-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics