Nothing Special   »   [go: up one dir, main page]

Skip to main content

Estimating the Total Variability Space Using Sparse Probabilistic Principal Component Analysis

  • Conference paper
Biometric Recognition (CCBR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7701))

Included in the following conference series:

  • 1850 Accesses

Abstract

In this paper, we introduce a new method to estimate the total variability space using sparse probabilistic Principal Component Analysis (PCA) with the Baum-Welch statistics for speaker verification. In conventional method, probabilistic PCA is used, which is a probabilistic formulation for PCA. Recently some methods improve interpretability by sparse representation through adding an L1 regularizer. We introduce a Laplacian prior to each element in the transformation matrix, since Laplacian prior is equivalent to L1 regularization. Variational inference is used and we can drive the EM algorithm formulas for estimating the space with the statistics. After WCCN, the cosine similarity scoring is used for decision. The experiments have been run on the NIST SRE 2008 data, and the results show that the performance can be improved 10.2% for female and is comparable for male.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kenny, P., Gilles, B., Pierre, D.: Eigenvoice Modeling With Sparse Training Data. IEEE Trans. Speech and Audio Proc. 13(3), 345–354 (2005)

    Article  Google Scholar 

  2. Kenny, P., et al.: Joint Factor Analysis Versus Eigenchannels in Speaker Recognition. IEEE Trans. Speech and Language Proc. 15(4), 1435–1447 (2007)

    Article  Google Scholar 

  3. Dehak, N., et al.: Support vector machines versus fast scorring in the low-dimensional total variability space for speaker verification. In: Interspeech, Brighton, UK (2009)

    Google Scholar 

  4. Reynolds, D.A., Quatieri, T., Dunn, R.: Speaker verification using adapted Gaussian mixture models. Digital Signal Processing 10(1-3) (2000)

    Google Scholar 

  5. Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers. Neural Computation 11, 435–474 (1999)

    Article  Google Scholar 

  6. Roweis, S.: EM Algorithms for PCA and SPCA. In: Advances in Neural Information Processing Systems (1998)

    Google Scholar 

  7. Jolliffe, I.T.: Principal Component analysis. Springer, New York (1986)

    Google Scholar 

  8. Guan, Y., Dy, J.G.: Sparse Probabilistic Principal Component Analysis. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, Clearwater Beach, Florida, USA, vol. 5 (2009)

    Google Scholar 

  9. Bishop, C.M.: Variational Principal Components. In: Proceedings Ninth International Conference on Artificial Neural Network, vol. 1, pp. 509–514

    Google Scholar 

  10. Li, M., et al.: Speaker Verification using Sparse Representations on Total Variability I-Vector. In: Interspeech, Florence, Italy (2011)

    Google Scholar 

  11. Hatch, A., Kajarekar, S., Stolcke, A.: Withinclass covariance normalization for svm-based speaker recognition. In: Interspeech – 9th International Conference on Spoken Language Processing-ICSLP, vol. 3, pp. 1471–1474 (2006)

    Google Scholar 

  12. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 228–233 (2004)

    Article  Google Scholar 

  13. Shum, S., et al.: Unsupervised Speaker Adaptation based on the Cosine Similarity for Text-Independent Speaker Verification, Odyssey. In: The Speaker and Language Recognition Workshop (2010)

    Google Scholar 

  14. Dehak, N., et al.: Cosine Similarity Scoring without Score Normalization Techniques, Odyssey. In: The Speaker and Language Recognition Workshop (2010)

    Google Scholar 

  15. Auckenthaler, R., Carey, M., Thomas, H.L.: Score Normalization for Text-Independent Speaker Verification Systems. Digital Signal Processing 10, 42–54 (2000)

    Article  Google Scholar 

  16. Daniel, G.R., Carol, Y.E.W.: Joint Factor Analysis for Speaker Recognition reinterpreted as Signal Coding using Overcomplete dictionaries, Odyssey. In: The Speaker and Language Recognition Workshop (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lei, Z., Ye, J. (2012). Estimating the Total Variability Space Using Sparse Probabilistic Principal Component Analysis. In: Zheng, WS., Sun, Z., Wang, Y., Chen, X., Yuen, P.C., Lai, J. (eds) Biometric Recognition. CCBR 2012. Lecture Notes in Computer Science, vol 7701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35136-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35136-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35135-8

  • Online ISBN: 978-3-642-35136-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics