Nothing Special   »   [go: up one dir, main page]

Skip to main content

Kernel Based Enhanced Maximum Margin Criterion for Feature Extraction

  • Conference paper
Biometric Recognition (CCBR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7701))

Included in the following conference series:

  • 1811 Accesses

Abstract

A new kernel discriminant analysis algorithm, called Kernel-based Enhanced Maximum Margin Criterion (KEMMC), is presented for extracting features from high-dimensional data space. In this paper, the EMMC is firstly proposed which attempts to maximize the average margin between classes after dimensionality reduction transformation. In our method, a weighted matrix is introduced and the local property is taken into account so that the data points of neighboring classes can be mapped far away. Moreover, the regularized technique is employed to deal with small sample size problem. As EMMC is a linear method, it is extended to a nonlinear form by mapping the input space to a high-dimensional feature space which can make the mapped features linearly separable. Extensive experiments on handwritten digit image and face image data demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  2. Zhuang, X.S., Dai, D.Q.: Improved discriminant analysis for high-dimensional data and its application to face recognition. Pattern Recognition 40(5), 1570–1578 (2007)

    Article  MATH  Google Scholar 

  3. Li, H.F., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. on Neural Networks 17(1), 157–165 (2006)

    Article  Google Scholar 

  4. Liu, Q., Tang, X., Lu, H., Ma, S.: Face recognition using kernel scatter-difference-based discriminant analysis. IEEE Trans. Neural Networks 17(4), 1081–1085 (2006)

    Article  Google Scholar 

  5. Lu, G.-F., Lin, Z., Jin, Z.: Face recognition using discriminant locality preserving projections based on maximum margin criterion. Pattern Recognition 43(10), 3572–3579 (2010)

    Article  MATH  Google Scholar 

  6. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face Recognition Using Kernel Direct Discriminant Analysis Algorithms. IEEE Trans. on Neural Networks 14(1), 117–126 (2003)

    Article  Google Scholar 

  7. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianface. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  8. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1615–1618 (2003)

    Article  Google Scholar 

  9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  10. Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 725–737 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, H. (2012). Kernel Based Enhanced Maximum Margin Criterion for Feature Extraction. In: Zheng, WS., Sun, Z., Wang, Y., Chen, X., Yuen, P.C., Lai, J. (eds) Biometric Recognition. CCBR 2012. Lecture Notes in Computer Science, vol 7701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35136-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35136-5_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35135-8

  • Online ISBN: 978-3-642-35136-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics