Abstract
A new kernel discriminant analysis algorithm, called Kernel-based Enhanced Maximum Margin Criterion (KEMMC), is presented for extracting features from high-dimensional data space. In this paper, the EMMC is firstly proposed which attempts to maximize the average margin between classes after dimensionality reduction transformation. In our method, a weighted matrix is introduced and the local property is taken into account so that the data points of neighboring classes can be mapped far away. Moreover, the regularized technique is employed to deal with small sample size problem. As EMMC is a linear method, it is extended to a nonlinear form by mapping the input space to a high-dimensional feature space which can make the mapped features linearly separable. Extensive experiments on handwritten digit image and face image data demonstrate the effectiveness of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Zhuang, X.S., Dai, D.Q.: Improved discriminant analysis for high-dimensional data and its application to face recognition. Pattern Recognition 40(5), 1570–1578 (2007)
Li, H.F., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. on Neural Networks 17(1), 157–165 (2006)
Liu, Q., Tang, X., Lu, H., Ma, S.: Face recognition using kernel scatter-difference-based discriminant analysis. IEEE Trans. Neural Networks 17(4), 1081–1085 (2006)
Lu, G.-F., Lin, Z., Jin, Z.: Face recognition using discriminant locality preserving projections based on maximum margin criterion. Pattern Recognition 43(10), 3572–3579 (2010)
Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face Recognition Using Kernel Direct Discriminant Analysis Algorithms. IEEE Trans. on Neural Networks 14(1), 117–126 (2003)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianface. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1615–1618 (2003)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 725–737 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hu, H. (2012). Kernel Based Enhanced Maximum Margin Criterion for Feature Extraction. In: Zheng, WS., Sun, Z., Wang, Y., Chen, X., Yuen, P.C., Lai, J. (eds) Biometric Recognition. CCBR 2012. Lecture Notes in Computer Science, vol 7701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35136-5_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-35136-5_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35135-8
Online ISBN: 978-3-642-35136-5
eBook Packages: Computer ScienceComputer Science (R0)