Nothing Special   »   [go: up one dir, main page]

Skip to main content

Kernel Sparse Locality Preserving Canonical Correlation Analysis for Multi-modal Feature Extraction

  • Conference paper
Biometric Recognition (CCBR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7701))

Included in the following conference series:

  • 1878 Accesses

Abstract

In this paper, a kernel based sparse locality preserving canonical correlation analysis (KSLPCCA) method is presented for high dimensional feature extraction. Unlike many existing techniques such as DCCA and 2D CCA, SLPCCA aims to preserve the sparse reconstructive relationship of the data, which is achieved by minimizing a regularization-related objective function. The obtained projections contain natural discriminating information even if no class labels are provided. As SLPCCA is a linear method, nonlinear extension is further proposed which can map the input space to a high-dimensional feature space. Experimental results demonstrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)

    Article  Google Scholar 

  2. Cooke, T.: Two Variations on Fisher’s Linear Discriminant for Pattern Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 268–273 (2002)

    Article  MathSciNet  Google Scholar 

  3. Hardoon, D.R., Szedmak, S., John, S.T.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16, 2639–2664 (2004)

    Article  MATH  Google Scholar 

  4. Wu, X., Jia, Y., Liang, W.: Incremental discriminant analysis of canonical correlations for action recognition. Pattern Recognition 43, 4190–4197 (2010)

    Article  MATH  Google Scholar 

  5. Sun, T., Chen, S., Yang, J., Shi, P.: A Novel Method of Combined Feature Extraction for Recognition. In: Eighth IEEE International Conference on Data Mining, pp. 1043–1048. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  6. Sun, T., Chen, S.: Locality preserving CCA with applications to data visualization and pose estimation. Image and Vision Computing 25, 531–543 (2007)

    Article  MATH  Google Scholar 

  7. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.S.: Learning With ℓ1-Graph for Image Analysis. IEEE Trans. on Image Processing 19(4), 858–866 (2010)

    Article  MathSciNet  Google Scholar 

  8. Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust Sparse Coding for Face Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 625–632. IEEE Press, New York (2011)

    Google Scholar 

  9. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Intl. Conf. on Neural Information Processing Systems, pp. 801–808. MIT Press (2006)

    Google Scholar 

  10. Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 725–737 (2006)

    Article  Google Scholar 

  11. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET Database and Evaluation Procedure for Face-Recognition Algorithms. Image and Vision Computing 16, 295–306 (1998)

    Article  Google Scholar 

  12. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face Recognition Using Kernel Direct Discriminant Analysis Algorithms. IEEE Trans. on Neural Networks 14(1), 117–126 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, H. (2012). Kernel Sparse Locality Preserving Canonical Correlation Analysis for Multi-modal Feature Extraction. In: Zheng, WS., Sun, Z., Wang, Y., Chen, X., Yuen, P.C., Lai, J. (eds) Biometric Recognition. CCBR 2012. Lecture Notes in Computer Science, vol 7701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35136-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35136-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35135-8

  • Online ISBN: 978-3-642-35136-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics