Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sound Environment Analysis in Smart Home

  • Conference paper
Ambient Intelligence (AmI 2012)

Abstract

This study aims at providing audio-based interaction technology that lets the users have full control over their home environment, at detecting distress situations and at easing the social inclusion of the elderly and frail population. The paper presents the sound and speech analysis system evaluated thanks to a corpus of data acquired in a real smart home environment. The 4 steps of analysis are signal detection, speech/sound discrimination, sound classification and speech recognition. The results are presented for each step and globally. The very first experiments show promising results be it for the modules evaluated independently or for the whole system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, M., Campo, E., Estève, D., Fourniols, J.Y.: Smart homes — current features and future perspectives. Maturitas 64(2), 90–97 (2009)

    Article  Google Scholar 

  2. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 66–75 (1991)

    Article  Google Scholar 

  3. Vacher, M., Portet, F., Fleury, A., Noury, N.: Development of audio sensing technology for ambient assisted living: Applications and challenges. International Journal of E-Health and Medical Communications 2(1), 35–54 (2011)

    Article  Google Scholar 

  4. Istrate, D., Vacher, M., Serignat, J.F.: Embedded implementation of distress situation identification through sound analysis. The Journal on Information Technology in Healthcare 6, 204–211 (2008)

    Google Scholar 

  5. Charalampos, D., Maglogiannis, I.: Enabling human status awareness in assistive environments based on advanced sound and motion data classification. In: Proceedings of the 1st International Conference on Pervasive Technologies Related to Assistive Environments, pp. 1:1–1:8 (2008)

    Google Scholar 

  6. Popescu, M., Li, Y., Skubic, M., Rantz, M.: An acoustic fall detector system that uses sound height information to reduce the false alarm rate. In: Proc. 30th Annual Int. Conference of the IEEE-EMBS 2008, August 20-25, pp. 4628–4631 (2008)

    Google Scholar 

  7. Badii, A., Boudy, J.: CompanionAble - integrated cognitive assistive & domotic companion robotic systems for ability & security. In: 1st Congres of the Société Française des Technologies pour l’Autonomie et de Gérontechnologie (SFTAG 2009), Troyes, pp. 18–20 (2009)

    Google Scholar 

  8. Hamill, M., Young, V., Boger, J., Mihailidis, A.: Development of an automated speech recognition interface for personal emergency response systems. Journal of Neuro Engineering and Rehabilitation 6 (2009)

    Google Scholar 

  9. Filho, G., Moir, T.J.: From science fiction to science fact: a smart-house interface using speech technology and a photo-realistic avatar. International Journal of Computer Applications in Technology 39(8), 32–39 (2010)

    Article  Google Scholar 

  10. Lecouteux, B., Vacher, M., Portet, F.: Distant Speech Recognition in a Smart Home: Comparison of Several Multisource ASRs in Realistic Conditions. In: Interspeech 2011, Florence, Italy, p. 4 (August 2011)

    Google Scholar 

  11. Chen, J., Kam, A.H., Zhang, J., Liu, N., Shue, L.: Bathroom Activity Monitoring Based on Sound. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 47–61. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Portet, F., Vacher, M., Golanski, C., Roux, C., Meillon, B.: Design and evaluation of a smart home voice interface for the elderly – acceptability and objection aspects. Personal and Ubiquitous Computing (in press)

    Google Scholar 

  13. Rougui, J., Istrate, D., Souidene, W.: Audio sound event identification for distress situations and context awareness. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, Minneapolis, USA, pp. 3501–3504 (2009)

    Google Scholar 

  14. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, vol. 11, pp. 487–493. MIT Press (1998)

    Google Scholar 

  15. Temko, A., Monte, E., Nadeu, C.: Comparison of sequence discriminant support vector machines for acoustic event classification. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (2005)

    Google Scholar 

  16. Wan, V., Renals, S.: Speaker verification using sequence discriminant support vector machines. IEEE Transactions on Speech and Audio Processing, 203–210 (2005)

    Google Scholar 

  17. Campbell, W.M., Sturim, D.E., Reynolds, D.A., Solomonoff, A.: SVM based speaker verification using a gmm supervector kernel and nap variability compensation. In: Proceedings of ICASSP 2006, pp. 97–100 (2006)

    Google Scholar 

  18. Fauve, B., Matrouf, D., Scheffer, N., Bonastre, J.F.: State-of-the-art performance in text-independent speaker verification through open-source software. IEEE Transactions on Audio, Speech, and Language Processing 15, 1960–1968 (2007)

    Article  Google Scholar 

  19. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 121–167 (1998)

    Google Scholar 

  20. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2002)

    Google Scholar 

  21. Sehili, M.A., Istrate, D., Boudy, J.: Primary investigations of sound recognition for a domotic application using support vector. Automation, Computers, Electronics and Mechatronics, vol. 7(34(2)), pp. 61–65. Annals of the University of Craiova (2010)

    Google Scholar 

  22. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian mixture models. In: Digital Signal Processing 2000 (2000)

    Google Scholar 

  23. Wölfel, M., McDonough, J.: Distant Speech Recognition, p. 573. John Wiley and Sons (2009)

    Google Scholar 

  24. Linarès, G., Nocéra, P., Massonié, D., Matrouf, D.: The LIA Speech Recognition System: From 10xRT to 1xRT. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 302–308. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Lecouteux, B., Linarès, G., Estève, Y., Gravier, G.: Generalized driven decoding for speech recognition system combination. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, pp. 1549–1552 (2008)

    Google Scholar 

  26. Lecouteux, B., Linarès, G., Bonastre, J., Nocéra, P.: Imperfect transcript driven speech recognition. In: InterSpeech 2006, pp. 1626–1629 (2006)

    Google Scholar 

  27. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: Proceedings of International Symposium on Music Information Retrieval (2000)

    Google Scholar 

  28. Vacher, M., Lecouteux, B., Portet, F.: Recognition of Voice Commands by Multisource ASR and Noise Cancellation in a Smart Home Environment. In: EUSIPCO, Bucarest, Romania, pp. 1663–1667 (August 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sehili, M.A. et al. (2012). Sound Environment Analysis in Smart Home. In: Paternò, F., de Ruyter, B., Markopoulos, P., Santoro, C., van Loenen, E., Luyten, K. (eds) Ambient Intelligence. AmI 2012. Lecture Notes in Computer Science, vol 7683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34898-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34898-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34897-6

  • Online ISBN: 978-3-642-34898-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics