Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning and Generating Folk Melodies Using MPF-Inspired Hierarchical Self-Organising Maps

  • Conference paper
Simulated Evolution and Learning (SEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7673))

Included in the following conference series:

  • 1557 Accesses

Abstract

One of the elements in human music creativity results from certain features in the brain that allows it to make predictions of events based on information learnt from past music experiences. Inspired by the Memory Prediction Framework (MPF) theory, we propose a method to learn and generate new melodies based on the MPF concept. We first show how an MPF-inspired Hierarchical Self Organizing Map (MPF-HSOM) is used to capture these important features of the brain in the perspective of MPF. This MPF-HSOM is then trained with a selection of melodies taken from a corpus of folk melodies. We then show that by using a prediction algorithm, we are able to generate new melodies based on the trained MPF-HSOM of old melodies. The system proposed here is an abstraction of the features of the brain according to MPF. The results indicate that the system is able to learn and to produce novel melodies of reasonable quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carpinteiro, O.A.S.: A hierarchical self-organising map model for sequence recognition. Pattern Analysis & Applications (3), 279–287 (2000)

    Google Scholar 

  2. Chew, E., Chen, Y.: Realtime pitch spelling using the spiral array. Computer Music Journal 29(3), 61–76 (2005)

    Article  Google Scholar 

  3. Dittenbach, M., Merkl, D., Rauber, A.: The Growing Hierarchical Self-Organizing Map. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2000), Como, Italy, pp. VI-15–VI-19. IEEE (2000)

    Google Scholar 

  4. Hawkins, J., Blakeslee, S.: On Intelligence. Henry Holt, New York (2004)

    Google Scholar 

  5. James, D.L., Miikkulainen, R.: SARDNET: a self-organising feature map for sequences. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Proceedings of the Advances in Neural Information Processing Systems, vol. 7. Morgan Kaufmann (1995)

    Google Scholar 

  6. Kangas, J.: On the analysis of pattern sequences by self-organising maps. PhD thesis, Laboratory of Computer and Information Science, Helsinki University of Technology, Rakentajanaukio 2C, SF-02150, Finland (1994)

    Google Scholar 

  7. Kohonen, T.: Self-organising Maps, 2nd edn. Springer, Berlin (1997)

    Book  Google Scholar 

  8. Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.: Recurrent SOM with local linear models in time series prediction. In: Proceedings of the 6th European Symposium on Artificial Neural Networks, pp. 167–172 (1998)

    Google Scholar 

  9. Lampinen, J., Oja, E.: Clustering properties of hierarchical self-organizing maps. Journal of Mathematical Imaging and Vision 2, 261–272 (1992)

    Article  MATH  Google Scholar 

  10. Law, E.H.H., Phon-Amnuaisuk, S.: Towards Music Fitness Evaluation with the Hierarchical SOM. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 443–452. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Mountcastle, V.B.: Organizing principle for cerebral function: The unit model and the distributed system. In: Eldelman, G.M., Mountcastle, V.B. (eds.) The Mindful Brain. MIT Press (1978)

    Google Scholar 

  12. Skovenborg, E., Arnspang, J.: Extraction of Structural Patterns in Popular Melodies. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 98–113. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Toivianen, P., Eerola, T.: A method for comparative analysis of folk music based on musical feature extraction and neural networks. In: Proceedings of the Seventh International Symposium on Systematic and Comparative Musicology; the Third International Conference on Cognitive Musicology, Jyväskylä, Finland, pp. 41–45 (2001)

    Google Scholar 

  14. Wiemer, J.: The Time-Organized Map algorithm: Extending the self-organizing map to spatiotemporal signals. Neural Computation 15, 1143–1171 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Law, E.HH., Phon-Amnuaisuk, S. (2012). Learning and Generating Folk Melodies Using MPF-Inspired Hierarchical Self-Organising Maps. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds) Simulated Evolution and Learning. SEAL 2012. Lecture Notes in Computer Science, vol 7673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34859-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34859-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34858-7

  • Online ISBN: 978-3-642-34859-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics