Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cross-Media Semantics Mining Based on Sparse Canonical Correlation Analysis and Relevance Feedback

  • Conference paper
Advances in Multimedia Information Processing – PCM 2012 (PCM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7674))

Included in the following conference series:

Abstract

Cross-media learning is a new hot topic in multimedia content analysis and retrieval. Because multimedia data of different modalities are heterogeneous in feature space and there exists the well-know semantic gap, one of the most challenging issues for cross-media learning is to mine underlying semantics and estimate cross-media correlation. In this paper we propose a cross-media semantics mining approach based on Sparse Canonical Correlation Analysis and relevance feedback. First, we analyze sparse canonical correlation between low-level feature matrices of different modalities in training stage, and construct a Multimodal Sparse Subspace where both canonical correlation and most meaningful features are preserved; then based on geometric distance in the subspace we estimate cross-media correlation and enable cross-media retrieval; also we provide long-term relevance feedback strategy for performance optimization. Our approach is tested with general multimedia data, including image, audio and text. Experiment and comparison results are encouraging and show that the performance of our approach is effective.

This work is supported by National Natural Science Foundation of China (No.61003127).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, Y., Zhuang, Y., Wu, F., Pan, Y.: Harmonizing Hierarchical Manifolds for Multimedia Document Semantics Understanding and Cross-media Retrieval. IEEE Transactions on Multimedia 10(3), 437–446 (2008)

    Article  Google Scholar 

  2. Zhang, H., Liu, X.: Boosting Multimodal Semantic Understanding by Local Similarity Adaptation and Global Correlation Propagation. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y., Kuo, C.-C.J., Lew, M.S. (eds.) PCM 2010, Part I. LNCS, vol. 6297, pp. 148–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Zhuang, Y., Yang, Y., Wu, F.: Mining Semantic Correlation of Heterogeneous Multimedia Data for Cross-media Retrieval. IEEE Transactions on Multimedia 10(2), 221–229 (2008)

    Article  Google Scholar 

  4. Lew, M.: Content Based Multimedia Information Retrieval: State of the Art and Challenges. ACM Transactions on Multimedia Computing, Communications and Applications 2(1), 1–19 (2006)

    Article  MathSciNet  Google Scholar 

  5. He, X., Ma, W.Y., Zhang, H.J.: Learning an Image Manifold for Retrieval. In: Proceedings of ACM Multimedia Conference (2004)

    Google Scholar 

  6. Zhang, H., Weng, J.: Measuring Multi-modality Similarities Via Subspace Learning for Cross-Media Retrieval. In: Zhuang, Y.-T., Yang, S.-Q., Rui, Y., He, Q. (eds.) PCM 2006. LNCS, vol. 4261, pp. 979–988. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Hotelling, H.: Relations Between Two Sets of Variates. Biometrika, 321–377 (1936)

    Google Scholar 

  8. Witten, D.M., Tibshirani, R.: Extensions of sparse canonical correlation analysis, with applications to genomic data. Statistical Applications in Genetics and Molecular Biology 8(1) (2009)

    Google Scholar 

  9. Torres, D.A.: Using sparse CCA for vocabulary selection. M.S. University of California, San Diego (2009)

    Google Scholar 

  10. Torres, D.A., Turnbull, D., Barrington, L., Sriperumbudur, B.K., Lanckriet, G.: Finding Musically Meaningful Words by Sparse CCA. In: NIPS Workshop on Music, Brain & Cognition (2007)

    Google Scholar 

  11. Zhang, R., Zhang, Z.: Effective Image Retrieval based on Hidden Concept Discovery in Image Database. IEEE Transactions on Image Processing 16(2), 562–572 (2007)

    Article  MathSciNet  Google Scholar 

  12. Yang, Y., Nie, F., Xu, D., Luo, J., Zhuang, Y., Pan, Y.: A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(4), 723–742 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, H., Liu, X. (2012). Cross-Media Semantics Mining Based on Sparse Canonical Correlation Analysis and Relevance Feedback. In: Lin, W., et al. Advances in Multimedia Information Processing – PCM 2012. PCM 2012. Lecture Notes in Computer Science, vol 7674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34778-8_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34778-8_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34777-1

  • Online ISBN: 978-3-642-34778-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics