Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reducing the Power Consumption of an IMU-Based Gait Measurement System

  • Conference paper
Advances in Multimedia Information Processing – PCM 2012 (PCM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7674))

Included in the following conference series:

Abstract

This paper presents our approach to reducing the power consumption in our Gait Measurement System (GMS), which is the foundation for various monitoring and assistive systems. Our GMS is a small foot-mounted device based on an Inertial Measurement Unit (IMU), containing an accelerometer and a gyroscope. It can compute gait parameters in real-time, including cadence, velocity and stride length, before transmitting them to a nearby receiver via a radio frequency (RF) module. Our power saving strategy exploits the cooperation between both hardware and software. By realizing on-chip computing, reducing RF usage and enabling sleep mode, the GMS’s current consumption was dramatically reduced. In active mode, the GMS consumes about 2.1mA, while in standby mode, the current is only 20μA. Powered by a small rechargeable 110mAh battery, we expect the GMS to last for months of normal usage without recharging; a duration necessary for our intended applications in e-health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Derawi, M.O.: Accelerometer-Based Gait Analysis, A survey. In: Norwegian Information Security Conference, NISK 2010, pp. 33–44 (2010)

    Google Scholar 

  2. Bours, P., Shrestha, R.: Eigensteps: A giant leap for gait recognition. In: 2010 2nd International Workshop on Security and Communication Networks, IWSCN, pp. 1–6 (May 2010)

    Google Scholar 

  3. Kim, S.B., Lee, S.Y., Choi, J.H., Choi, K.H., Jang, B.T.: A bimodal approach for GPS and IMU integration for land vehicle applications. In: 2003 IEEE 58th Vehicular Technology Conference, VTC 2003-Fall, vol. 4, pp. 2750–2753 (October 2003)

    Google Scholar 

  4. Ojeda, L., Borenstein, J.: Non-GPS navigation for security personnel and first responders. Journal of Navigation 60(3), 391–407 (2007)

    Article  Google Scholar 

  5. Beach, A., Gartrell, M., Xing, X., Han, R., Lv, Q., Mishra, S., Seada, K.: Fusing mobile, sensor, and social data to fully enable context-aware computing. In: Proceedings of the Eleventh Workshop on Mobile Computing Systems and Applications, HotMobile 2010, pp. 60–65. ACM, New York (2010)

    Chapter  Google Scholar 

  6. Thaut, M.H., McIntosh, G.C., Rice, R.R., Miller, R.A., Rathbun, J., Brault, J.M.: Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Movement Disorders 11(2), 193–200 (1996)

    Article  Google Scholar 

  7. Li, Z., Xiang, Q., Hockman, J., Yang, J., Yi, Y., Fujinaga, I., Wang, Y.: A music search engine for therapeutic gait training. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 627–630. ACM, New York (2010)

    Chapter  Google Scholar 

  8. Udaya Shankar, P.S., Raveendranathan, N., Gans, N.R., Jafari, R.: Towards power optimized kalman filter for gait assessment using wearable sensors. In: Wireless Health 2010, WH 2010, pp. 137–144. ACM, New York (2010)

    Chapter  Google Scholar 

  9. Sabatini, A., Martelloni, C., Scapellato, S., Cavallo, F.: Assessment of walking features from foot inertial sensing. IEEE Transactions on Biomedical Engineering 52(3), 486–494 (2005)

    Article  Google Scholar 

  10. Li, Q., Young, M., Naing, V., Donelan, J.: Walking speed estimation using a shank-mounted inertial measurement unit. Journal of Biomechanics 43(8), 1640–1643 (2010)

    Article  Google Scholar 

  11. Zhu, S., Anderson, H., Wang, Y.: A Real-Time On-Chip Algorithm for IMU-Based Gait Measurement. In: Weisi, L., Dong, X., Anthony, H., Jianxin, W., Ying, H., Jianfei, C., Mohan, K., Ming-Ting, S. (eds.) PCM 2012. LNCS, vol. 7674, pp. 93–104. Springer, Heidelberg (2012)

    Google Scholar 

  12. Peruzzi, A., Croce, U.D., Cereatti, A.: Estimation of stride length in level walking using an inertial measurement unit attached to the foot: A validation of the zero velocity assumption during stance. Journal of Biomechanics 44(10), 1991–1994 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, S., Anderson, H., Wang, Y. (2012). Reducing the Power Consumption of an IMU-Based Gait Measurement System. In: Lin, W., et al. Advances in Multimedia Information Processing – PCM 2012. PCM 2012. Lecture Notes in Computer Science, vol 7674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34778-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34778-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34777-1

  • Online ISBN: 978-3-642-34778-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics