Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient RSA Implementation without Precomputation

  • Conference paper
Information Security and Cryptology (Inscrypt 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7537))

Included in the following conference series:

  • 1357 Accesses

Abstract

Modular multiplication is widely used in cryptographic algorithms. In order to improve the efficiency, most of the recent implementations adopt precomputation. Precomputation improves the speed and in the meanwhile makes the algorithms more complex. The complex algorithms are not suitable for hardware implementation. We propose a new algorithm without precomputation, which is more efficient even compared with the ones with precomputation. Our algorithm is based on interleaving modular algorithm. The modulus in our algorithm is enlarged, and this modification greatly reduces the number of subtractions. By a small change of the multiplier, our algorithm does not need the last subtraction. We also propose a pipeline scheme which can achieve high frequency. Compared with existing work (including the precomputation ones), our implementation improves the throughput/area by 47%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shieh, M., Chen, J., Wu, H., Lin, W.: A new modular exponentiation architecture for efficient design of RSA cryptosystem. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16(9), 1151–1161 (2008)

    Article  Google Scholar 

  2. Huang, M., Gaj, K., Kwon, S., El-Ghazawi, T.: An Optimized Hardware Architecture for the Montgomery Multiplication Algorithm. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 214–228. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. McIvor, C., et al.: FPGA Montgomery Multiplier Architectures -A Comparison. IEEE Computer Society (2004)

    Google Scholar 

  4. Blakely, G.: A computer algorithm for calculating the product AB modulo M. IEEE Transactions on Computers 100(5), 497–500 (1983)

    Article  Google Scholar 

  5. Koç, Ç.: Rsa hardware implementation. Tech. rep. RSA Laboratories (1996)

    Google Scholar 

  6. Koç, Ç., Hung, C.: Carry-save adders for computing the product AB modulo N. Electronics Letters 26(13), 899–900 (1990)

    Article  Google Scholar 

  7. Koç, Ç., Hung, C.: Bit-level systolic arrays for modular multiplication. The Journal of VLSI Signal Processing 3(3), 215–223 (1991)

    Article  Google Scholar 

  8. Koç, Ç., Hung, C.: A Fast algorithm for modular reduction. IEE Proceedings-Computers and Digital Techniques 145(4), 265–271 (1998)

    Article  Google Scholar 

  9. Montgomery, P.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tenca, A.F., Koç, Ç.K.: A Scalable Architecture for Montgomery Multiplication. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 94–108. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Harris, D., Krishnamurthy, R., Anders, M., Mathew, S., Hsu, S.: An improved unified scalable radix-2 montgomery multiplier. IEEE Computer Society (2005)

    Google Scholar 

  12. Mesquita, D., Perin, G., Herrmann, F., Martins, J.: An efficient implementation of montgomery powering ladder in reconfigurable hardware. In: Proceedings of the 23rd Symposium on Integrated Circuits and System Design, pp. 121–126. ACM (2010)

    Google Scholar 

  13. Perin, G., Mesquita, D., Herrmann, F., Martins, J.: Montgomery modular multiplication on reconfigurable hardware: fully systolic array vs parallel implementation. In: 2010 VI Southern Programmable Logic Conference (SPL), pp. 61–66. IEEE (2010)

    Google Scholar 

  14. Bunimov, V., Schimmler, M., Tolg, B.: A complexity-effective version of montgomery’s algorithm. In: Workshop on Complexity Effective Designs, ISCA, vol. 2. Citeseer (2002)

    Google Scholar 

  15. Bunimov, V., Schimmler, M.: Area and time efficient modular multiplication of large integers. In: Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors, pp. 400–409. IEEE (2003)

    Google Scholar 

  16. Schimmler, M., Bunimov, V.: Fast modular multiplication by operand changing. IEEE Computer Society (2004)

    Google Scholar 

  17. Narh Amanor, D., Paar, C., Pelzl, J., Bunimov, V., Schimmler, M.: Efficient hardware architectures for modular multiplication on FPGAs. In: Field Programmable Logic and Applications, pp. 539–542. IEEE (2005)

    Google Scholar 

  18. Knezevic, M., Batina, L., Verbauwhede, I.: Modular reduction without precomputational phase. In: IEEE International Symposium on Circuits and Systems, ISCAS 2009, pp. 1389–1392. IEEE (2009)

    Google Scholar 

  19. Knežević, M., Sakiyama, K., Fan, J., Verbauwhede, I.: Modular Reduction in GF(2n) without Pre-computational Phase. In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds.) WAIFI 2008. LNCS, vol. 5130, pp. 77–87. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. AbdelFattah, A.M., Bahaa El-Din, A.M., Fahmy, H.M.A.: An Efficient Architecture for Interleaved Modular Multiplication. World Academy of Science, Engineering and Technology (2009)

    Google Scholar 

  21. McIvor, C., McLoone, M., McCanny, J.: Modified Montgomery modular multiplication and RSA exponentiation techniques. In: IEE Proceedings - Computers and Digital Techniques, vol. 151, pp. 402–408. IET (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, W., Jing, J., Xia, L., Liu, Z., Yu, M. (2012). An Efficient RSA Implementation without Precomputation. In: Wu, CK., Yung, M., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2011. Lecture Notes in Computer Science, vol 7537. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34704-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34704-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34703-0

  • Online ISBN: 978-3-642-34704-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics