Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fisherman Search Procedure

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2012 (IBERAMIA 2012)

Abstract

Optimization is used in diverse areas of science, technology and business. Metaheuristics are one of the common approaches for solving optimization problems. In this paper we propose a novel and functional metaheuristic, Fisherman Search Procedure (FSP), to solve combinatorial optimization problems, which explores new solutions using a combination of guided and local search. We evaluate the performance of FSP on a set of benchmark functions commonly used for testing global optimization methods. We compare FSP with other heuristic methods referenced in literature, namely Differential Evolution (DE), Particle Swarm Optimization (PSO) and Greedy Randomized Adaptive Search Procedures (GRASP). Results are analyzed in terms of successful runs, i.e., convergence on global minimum values, and time consumption, demonstrating that FSP can achieve very good performances in most of the cases. In 90% of the cases FSP is located among the two better results as for successful runs. On the other hand, with regard to time consumption, FSP shows similar results to PSO and DE, achieving the best and second best results for 82% of the test functions. Finally, FSP showed to be a simple and robust metaheuristic that achieves good solutions for all evaluated theoretical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  2. Kirkpartick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calegari, P., Coray, G., Hertz, A., Kobler, D., Kuonen, P.: A Taxonomy of Evolutionary Algorithms in Combinatorial Optimization. Journal of Heuristics 5(2), 145–158 (1999)

    Article  MATH  Google Scholar 

  4. Moscato, P.: Memetic Algorithms – A Short Introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, London (1999)

    Google Scholar 

  5. Glover, F.: Scatter Search and Path Relinking. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 297–316. McGraw-Hill, London (1999)

    Google Scholar 

  6. Dorigo, M., Gambardella, L.M.: Ant Colony System – A Cooperative Learning Approach to the Travelling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  7. Eberhart, R.C., Kennedy, J.: A new Optimizer Using Particles Swarm Theory. In: 6th International Symposium on Micro Machine and Human Science (MHS 1995), pp. 39–43. IEEE (1995)

    Google Scholar 

  8. Resende, M.G.C., Ribeiro, C.C.: Greedy Randomized Adaptive Search Procedures. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 219–249. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Stützle, T.: Local Search Algorithms for Combinatorial Problems – Analysis, Algorithms and New Applications. DISKI – Dissertationen zur Künstliken Intelligenz, Infix (1999)

    Google Scholar 

  10. Stützle, T.: Iterated Local Search for the Quadratic Assignment Problem. Technical report, TU Darmstadt (1999)

    Google Scholar 

  11. Hansen, P., Mladenovic, N.: An Introduction to Variable Neighborhood Search. In: Voss, S., et al. (eds.) Metaheuristics – Advances and Trends in Local Search Paradigms for Optimization, pp. 433–458. Kluwer Academic Publishers (1999)

    Google Scholar 

  12. Molga, M., Smutnicki, C.: Test Functions for Optimization Needs. Technical report (2005), http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

  13. Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: IEEE World Congress on Computational Intelligence (WCCI 1998), pp. 69–73. IEEE (1998)

    Google Scholar 

  14. Clerc, M., Kennedy, J.: The Particle Swarm – Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  15. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical report TR-95-012, International Computer Science Institute, Berkeley, CA, USA (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Machado, O.J.A., Luna, J.M.F., Guadix, J.F.H., Morales, E.R.C. (2012). Fisherman Search Procedure. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds) Advances in Artificial Intelligence – IBERAMIA 2012. IBERAMIA 2012. Lecture Notes in Computer Science(), vol 7637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34654-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34654-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34653-8

  • Online ISBN: 978-3-642-34654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics