Abstract
We propose progressive minimal criteria novelty search (PMCNS), which is an extension of minimal criteria novelty search. In PMCNS, we combine the respective benefits of novelty search and fitness-based evolution by letting novelty search freely explore new regions of behaviour space as long as the solutions meet a progressively stricter fitness criterion. We evaluate the performance of our approach in the evolution of neurocontrollers for a swarm of robots in a coordination task where robots must share a single charging station. The robots can only survive by periodically recharging their batteries. We compare the performance of PMCNS with (i) minimal criteria novelty search, (ii) pure novelty search, (iii) pure fitness-based evolution, and (iv) with evolutionary search based on a linear blend of novelty and fitness. Our results show that PMCNS outperforms all four approaches. Finally, we analyse how different parameter setting in PMCNS influence the exploration of the behaviour space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cuccu, G., Gomez, F.J.: When Novelty Is Not Enough. In: Chio, C.D., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 234–243. Springer, Heidelberg (2011)
Gomes, J., Urbano, P., Christensen, A.L.: Introducing Novelty Search to Evolutionary Swarm Robotics. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 85–96. Springer, Heidelberg (2012)
Hugues, L., Bredeche, N.: Simbad – An Autonomous Robot Simulation Package for Education and Research. In: Nolfi, S., et al. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 831–842. Springer, Heidelberg (2006)
Lehman, J., Stanley, K.O.: Revising the Evolutionary Computation Abstraction – Minimal Criteria Novelty Search. In: 2010 Genetic and Evolutionary Computation Conference (GECCO 2010), pp. 103–110. ACM, New York (2010)
Lehman, J., Stanley, K.O.: Abandoning Objectives – Evolution through the Search for Novelty Alone. Evolutionary Computation 19(2), 189–223 (2011)
Lehman, J., Stanley, K.O.: Evolving a Diversity of Virtual Creatures through Novelty Search and Local Competition. In: 2011 Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 211–218. ACM, New York (2011)
Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a Robot Designed for Education in Engineering. In: 9th Conference on Autonomous Robot Systems and Competitions (Robotica 2009), pp. 59–65. IPCB, Castelo Branco (2009)
Mouret, J.: Novelty-Based Multiobjectivization. In: Doncieux, S., Bredèche, N., Mouret, J.B. (eds.) New Horizons in Evolutionary Robotics. SCI, vol. 341, pp. 139–154. Springer, Heidelberg (2011)
Mouret, J.B., Doncieux, S.: Encouraging Behavioral Diversity in Evolutionary Robotics – An Empirical Study. Evolutionary Computation 20(1), 91–133 (2012)
Risi, S., Vanderbleek, S.D., Hughes, C.E., Stanley, K.O.: How Novelty Search Escapes the Deceptive Trap of Learning to Learn. In: 2009 Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 153–160. ACM, New York (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gomes, J., Urbano, P., Christensen, A.L. (2012). Progressive Minimal Criteria Novelty Search. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds) Advances in Artificial Intelligence – IBERAMIA 2012. IBERAMIA 2012. Lecture Notes in Computer Science(), vol 7637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34654-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-34654-5_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34653-8
Online ISBN: 978-3-642-34654-5
eBook Packages: Computer ScienceComputer Science (R0)