Nothing Special   »   [go: up one dir, main page]

Skip to main content

Progressive Minimal Criteria Novelty Search

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2012 (IBERAMIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7637))

Included in the following conference series:

Abstract

We propose progressive minimal criteria novelty search (PMCNS), which is an extension of minimal criteria novelty search. In PMCNS, we combine the respective benefits of novelty search and fitness-based evolution by letting novelty search freely explore new regions of behaviour space as long as the solutions meet a progressively stricter fitness criterion. We evaluate the performance of our approach in the evolution of neurocontrollers for a swarm of robots in a coordination task where robots must share a single charging station. The robots can only survive by periodically recharging their batteries. We compare the performance of PMCNS with (i) minimal criteria novelty search, (ii) pure novelty search, (iii) pure fitness-based evolution, and (iv) with evolutionary search based on a linear blend of novelty and fitness. Our results show that PMCNS outperforms all four approaches. Finally, we analyse how different parameter setting in PMCNS influence the exploration of the behaviour space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cuccu, G., Gomez, F.J.: When Novelty Is Not Enough. In: Chio, C.D., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 234–243. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Gomes, J., Urbano, P., Christensen, A.L.: Introducing Novelty Search to Evolutionary Swarm Robotics. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 85–96. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Hugues, L., Bredeche, N.: Simbad – An Autonomous Robot Simulation Package for Education and Research. In: Nolfi, S., et al. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 831–842. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Lehman, J., Stanley, K.O.: Revising the Evolutionary Computation Abstraction – Minimal Criteria Novelty Search. In: 2010 Genetic and Evolutionary Computation Conference (GECCO 2010), pp. 103–110. ACM, New York (2010)

    Google Scholar 

  5. Lehman, J., Stanley, K.O.: Abandoning Objectives – Evolution through the Search for Novelty Alone. Evolutionary Computation 19(2), 189–223 (2011)

    Article  Google Scholar 

  6. Lehman, J., Stanley, K.O.: Evolving a Diversity of Virtual Creatures through Novelty Search and Local Competition. In: 2011 Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 211–218. ACM, New York (2011)

    Google Scholar 

  7. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a Robot Designed for Education in Engineering. In: 9th Conference on Autonomous Robot Systems and Competitions (Robotica 2009), pp. 59–65. IPCB, Castelo Branco (2009)

    Google Scholar 

  8. Mouret, J.: Novelty-Based Multiobjectivization. In: Doncieux, S., Bredèche, N., Mouret, J.B. (eds.) New Horizons in Evolutionary Robotics. SCI, vol. 341, pp. 139–154. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Mouret, J.B., Doncieux, S.: Encouraging Behavioral Diversity in Evolutionary Robotics – An Empirical Study. Evolutionary Computation 20(1), 91–133 (2012)

    Article  Google Scholar 

  10. Risi, S., Vanderbleek, S.D., Hughes, C.E., Stanley, K.O.: How Novelty Search Escapes the Deceptive Trap of Learning to Learn. In: 2009 Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 153–160. ACM, New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomes, J., Urbano, P., Christensen, A.L. (2012). Progressive Minimal Criteria Novelty Search. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds) Advances in Artificial Intelligence – IBERAMIA 2012. IBERAMIA 2012. Lecture Notes in Computer Science(), vol 7637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34654-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34654-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34653-8

  • Online ISBN: 978-3-642-34654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics