Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Image Representation Method Based on Retina Mechanism for the Promotion of SIFT and Segmentation

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7667))

Included in the following conference series:

  • 4011 Accesses

Abstract

In this paper, a bio-inspired neural network was constructed. It could represent images effectively and provide a processing method for image understanding. Our model adopted the retinal ganglion cells (GCs) and their non-classical receptive field (nCRF) can dynamic self-adjusts according to the characteristics of the image. Extensive experimental evaluations to demonstrate that this kind of representation method was able to make for SIFT detector for focus on foreground object more correctly, and promote the result of image segmentation significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Elder, J.H.: Are edges incomplete? International Journal of Computer Vision 34(2), 97–122 (1999)

    Article  MathSciNet  Google Scholar 

  2. Shou, T., Wang, W., Yu, H.: Orientation biased extended surround of the receptive field of cat retinal ganglion cells. Neuroscience 98, 207–212 (2000)

    Article  Google Scholar 

  3. Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In: IEEE International Conference on Computer Vision, vol. 651, pp. 654–661. IEEE Press (2005)

    Google Scholar 

  4. Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still image. International Journal of Computer Vision 76(1), 53–69 (2008)

    Article  Google Scholar 

  5. Fauqueur, J., Boujemaa, N.: Region-based image retrieval: Fast coarse segmentation and fine color description. Journal of Visual Languages & Computing 15(1), 69–95 (2004)

    Article  Google Scholar 

  6. Deng, Y., Manjunath, B., Kenney, C., Moore, M.S., Shin, H.: An efficient color representation for image retrieval. IEEE Transactions on Image Processing 10(1), 140–147 (2001)

    Article  MATH  Google Scholar 

  7. Qiu, F.T., Chao-Yi, L.: Mathematic simulation of disinhibitory properties of concentric receptive field. Acta Biophysica Sinica 11, 214–220 (1995)

    Google Scholar 

  8. Ghosh, K., Sarkar, S., Bhaumik, K.: A possible mechanism of zero-crossing detection using the concept of the extended classical receptive field of retinal ganglion cells. Biological Cybernetics 93, 1–5 (2005)

    Article  MATH  Google Scholar 

  9. Chao-Yi, L., Wu, L.: Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons–classification and tuning properties. Vision Research 34(18), 2337–2355 (1994)

    Article  Google Scholar 

  10. Chao-Yi, L.: Integration field beyond the classical receptive field: organization and functional properties. News Physiol. Sci. 11, 181–186 (1996)

    Google Scholar 

  11. Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision, vol. 1152, pp. 1150–1157. IEEE Press (1999)

    Google Scholar 

  12. Fernandes, B.J.T., Cavalcanti, G.D.C., Ren, T.I.: Nonclassical receptive field inhibitonapplied to image segmentation. Neural Network World 19, 21 (2010)

    Google Scholar 

  13. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 1 (2011)

    Article  Google Scholar 

  14. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceeding Eighth IEEE International Conference Computer Vision, vol. 412, pp. 416–423. IEEE Press (2001)

    Google Scholar 

  15. Maire, M., Arbeláez, P., Fowlkes, C., Malik, J.: Using contours to detect and localize junctions in natural images. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press (2008)

    Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  17. Arbelaez, P.: Boundary extraction in natural images using ultrametric contour maps. In: IEEE Vision and Pattern Recogniton Workshop, pp. 182–182. IEEE Press (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, H., Lang, B., Zuo, QS. (2012). An Image Representation Method Based on Retina Mechanism for the Promotion of SIFT and Segmentation. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34500-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34500-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34499-2

  • Online ISBN: 978-3-642-34500-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics