Nothing Special   »   [go: up one dir, main page]

Skip to main content

Semantic Analysis of FBI News Reports

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7666))

Included in the following conference series:

  • 4296 Accesses

Abstract

In this paper we present our work on semantic analysis of FBI News reports. In the paper we have considered the News which are of the immense significance for the analyst who want to analyze the News of specific area. With this definite analysis we are able to extract critical events or concepts described in News along with entities involved in the event. These entities include important actors of the event or concept, with location and temporal information. This information will help News analyzers to retrieve the information of interest efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shen, D., Lapata, M.: Using Semantic Roles to Improve Question Answering. In: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 12–21. Association for Computational Linguistics (2007)

    Google Scholar 

  2. Avramidis, E., Koehn, P.: Enriching Morphologically Poor Languages for Statistical Machine Translation. In: Proceedings of ACL 2008, pp. 763–770. Association of Computational Linguistics (2008)

    Google Scholar 

  3. Surdeanu, M., Harabagiu, S., Williams, J., Aarseth, P.: Using Predicate-Argument Structures for Information Extraction. In: Proceedings of 41st Meeting on Association of Computational Linguistics, pp. 8–15 (2008)

    Google Scholar 

  4. Kulick, S., Bies, A., Liberman, M., Mandeland, M., McDonald, R., Palmer, M., Schein, A., Ungar, L.: Integrated Annotation for Biomedical Information Extraction. In: HLT-NAACL 2004 Workshop: Biolink 2004, pp. 61–68 (2004)

    Google Scholar 

  5. Carreras, X., Márquez, L.: Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling. In: Proceedings Conference on Computational Natural Language Learning (CoNLL 2005), pp. 152–164. Association for Computational Linguistics (2005)

    Google Scholar 

  6. Gildea, D., Jurafsky, D.: Automatic Labeling of Semantic Roles. Computational Linguistics 28(3), 245–288 (2008)

    Article  Google Scholar 

  7. Björkelund, A., Bohnet, B., Hafdell, L., Nugues, P.: A High-performance Syntactic and Semantic Dependency Parser. In: Coling 2010: Demonstration Volume, pp. 33–36 (2010)

    Google Scholar 

  8. Tsai, R.T.H., Chou, Y.C., Su, Y.S., Lin, Y.C., Sung, C.L., Dai, H.J., Yeh, I.T.H., Ku, W.: S.T.Y., Hsu, W.L.: BIOSMILE: A Semantic Role Labeling System for Biomedical Verbs Using a Maximum-entropy Model with Automatically Generated Template Features. BMC 8(1) (2007)

    Google Scholar 

  9. Haji, J., Ciaramita, M., Johansson, R., et al.: The CoNLL-2009 Shared Task: Syntactic and Semantic Dependencies in Multiple Languages (2009)

    Google Scholar 

  10. http://www.fbi.gov/news/stories

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nizamani, S., Memon, N. (2012). Semantic Analysis of FBI News Reports. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34478-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34478-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34477-0

  • Online ISBN: 978-3-642-34478-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics