Nothing Special   »   [go: up one dir, main page]

Skip to main content

RAFNI: Robust Analysis of Functional NeuroImages with Non–normal α-Stable Error

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7663))

Included in the following conference series:

  • 3232 Accesses

Abstract

Functional Magnetic Resonance Imaging (fMRI) is a non-inasive neuro-imaging method that is widely used in cognitive neuroscience. It relies on the measurement of changes in the blood oxygenation level resulting from neural activity. The technique is widely used in cognitive neuroscience. fMRI is known to be contaminated by artifacts. Artifacts are known to have fat tails and are often skewed therefore modeling the error using a Gaussian distribution is a not enough. In this paper, we introduce RAFNI, an extention of AFNI, which is an fMRI open source software for the Analysis of Functional NeuroImages. We are modeling the error introduced by artifacts using α-stable distribution. We demonstrate the applicability and efficiency of stable distributions on real fMRI. We show that the α-stable estimator gives better results than the OLS-based estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heeger, D., Rees, D.: What does fMRI tell us about neural activity? Nat. Rev. Neurosc. 3, 142–151 (2002)

    Article  Google Scholar 

  2. Logothetis, N.: The neural basis of the BOLD fMRI signal. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357, 1003–1037 (2002)

    Article  Google Scholar 

  3. EEG/fMRI artcile

    Google Scholar 

  4. Ashby, F.G.: Statistical Analysis of fMRI Data. The MIT Press, London (2011)

    Google Scholar 

  5. Friston, K.J., Jezzard, P.J., Turner, R.: Analysis of functional MRI time-series. Human Brain Mapping 1, 153–171 (1994)

    Article  Google Scholar 

  6. Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45, 173–186 (2009)

    Article  Google Scholar 

  7. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., Luca, M.D., Drobnjak, I., Flitney, D.E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., Stefano, N.D., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, 208–219 (2004)

    Article  Google Scholar 

  8. Goebel, R., Esposito, F., Formisano, E.: Analysis of functional image analysis contest (FIAC) data with Brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping 27, 392–401 (2006)

    Article  Google Scholar 

  9. Cox, R.W.: AFNI: Software for Analysis and visualization of Functional Magnetic Resonance Neuroimages. Comp. and Biomed. Res. 29, 162–173 (1996)

    Article  Google Scholar 

  10. Mandelbrot, B.: Sur certain prix speculatifs: faits empiriques et modele basee sur les processes stables additifs de Paul Levy. Comptes Rendus 254, 3968–3970 (1962)

    MATH  Google Scholar 

  11. Mandelbrot, B., Hudson, L.R.: The (mis) Behaviour of Markets: A Fractal View of Risk, Ruin and Reward. Basic Books, New York (2004)

    Google Scholar 

  12. Zolotarev, V.M.: One-Dimensional Stable Distributions. American Mathematical Society (1986)

    Google Scholar 

  13. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall (1994)

    Google Scholar 

  14. Weron, R.: Levy-stable distributions revisited: Tail index 2 does not exclude the Levy-stable regime. International Journal of Modern Physics C12, 209–223 (2001)

    Article  Google Scholar 

  15. Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability. VSP, Netherlands, Utrecht (1999)

    Book  MATH  Google Scholar 

  16. Rachev, S.T., Mittnik, S.: Stable Paretian Models in Finance. Series in Financial Economics. John Wiley & Sons (2000)

    Google Scholar 

  17. Rimmer, R.H., Nolan, J.P.: Stable Distributions in Mathematica. Mathematica J. 9, 776–789 (2005)

    Google Scholar 

  18. Wuertz, D.: Rmetrics: An Environment and Software Collection for Teaching Financial Engineering and Computational Finance. R package fCalendar (2005), http://www.Rmetrics.org/

  19. Nolan, J.P.: Stable Distributions. Models for Heavy Tailed Data. Birkhauser, Boston (2005)

    Google Scholar 

  20. McCulloch, J.H.: Simple Consistent Estimators of Stable Distribution Parameters. Communications in Statistics - Simulations 15, 1109–1136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bensmail, H., Anjum, S., Bouhali, O., El Anbari, M. (2012). RAFNI: Robust Analysis of Functional NeuroImages with Non–normal α-Stable Error. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34475-6_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34474-9

  • Online ISBN: 978-3-642-34475-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics