Abstract
This work addresses the issue of automatic organic component detection and segmentation in confocal microscopy images. The proposed method performs cellular/parasitic identification through adaptive segmentation using a two-level Otsu’s Method. Segmented regions are divided using a rule-based classifier modeled on a decreasing harmonic function and a Support Vector Machine trained with features extracted from several Gaussian mixture models of the segmented regions. Results indicate the proposed method is able to count cells and parasites with accuracies above 90%, as well as perform individual cell/parasite detection in multiple nucleic regions with approximately 85% accuracy. Runtime measures indicate the proposed method is also adequate for real-time usage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ryan, K.J., Ray, C.G.: Sherris Medical Microbiology, pp. 749–754. McGraw-Hill (2004)
Myler, P., Fasel, N.: Leishmania: After The Genome. Caister Academic Press (2008)
Jeronimo, S.M.B., DeQueiroz-Sousa, A., Pearson, R.D.: Leishmaniasis. In: Goldman, L., Deds, A. (eds.) Cecil Medicine, 23th edn. ch. 369, Saunders Elsevier, Philadelphia (2007)
Lichtman, J.W., Conchello, J.A.: Fluorescence Microscopy. Nature Publishing Group (2005)
Spring, K.R.: MicroscopyU: Introduction to Fluorescence Microscopy (2010)
Liao, Q., Deng, Y.: An Accurate Segmentation Method For White Blood Cell Images. In: Proceedings IEEE International Symposium on Biomedical Imaging, pp. 245–248 (2002)
Ficarra, E., Cataldo, S.D., Acquaviva, A., Macii, E.: Automated Segmentation of Cells With IHC Membrane Staining. IEEE Transactions on Biomedical Engineering 58(5) (2011)
Jiang, K., Liao, Q., Dai, S.: A Novel White Blood Cell Segmentation Scheme Using Scale-Space Filtering And Watershed Clustering. In: Proceedings of ICMLC (2003)
Park, J., Keller, J.M.: Fuzzy Patch Label Relaxation in Bone Marrow Cell Segmentation. In: International Conference on Computational Cybernetics and Simulation, pp. 1133–1138 (1997)
Begelman, G., Gur, E., Rivlin, E., Rudzsky, M., Zalevsky, Z.: Cell Nuclei Segmentation Using Fuzzy Logic Engine. In: Proceedings IEEE International Conference on Image Processing (2004)
Yu, W., Lee, H.K., Hariharan, S., Bu, W., Ahmed, S.: Level Set Segmentation of Cellular Images Based on Topological Dependence. In: ISAVC (2008)
Yan, P., Zhou, X., Shah, M., Wong, S.T.C.: Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images. IEEE Transaction On Information Technology In Biomedicine 12(1) (2008)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 9(1), 62–66 (1979)
Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic Computers, 260–268 (1961)
Neal, R.A., Croft, S.L.: An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. Journal of Antimicrobial Chemotherapy 14(5), 463–475 (1984)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)
Reynolds, D.: Gaussian Mixture Models. MIT Lincoln Laboratory, MA 02140, USA
Gonzales, Woods: Digital Image Processing, 3rd edn. (DIP/3e) (2008)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007) ISBN: 0387310738
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nogueira, P.A., Teófilo, L.F. (2012). Automatic Analysis of Leishmania Infected Microscopy Images via Gaussian Mixture Models. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds) Advances in Artificial Intelligence - SBIA 2012. SBIA 2012. Lecture Notes in Computer Science(), vol 7589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34459-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-34459-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34458-9
Online ISBN: 978-3-642-34459-6
eBook Packages: Computer ScienceComputer Science (R0)