Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Analysis of Leishmania Infected Microscopy Images via Gaussian Mixture Models

  • Conference paper
Advances in Artificial Intelligence - SBIA 2012 (SBIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7589))

Included in the following conference series:

Abstract

This work addresses the issue of automatic organic component detection and segmentation in confocal microscopy images. The proposed method performs cellular/parasitic identification through adaptive segmentation using a two-level Otsu’s Method. Segmented regions are divided using a rule-based classifier modeled on a decreasing harmonic function and a Support Vector Machine trained with features extracted from several Gaussian mixture models of the segmented regions. Results indicate the proposed method is able to count cells and parasites with accuracies above 90%, as well as perform individual cell/parasite detection in multiple nucleic regions with approximately 85% accuracy. Runtime measures indicate the proposed method is also adequate for real-time usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ryan, K.J., Ray, C.G.: Sherris Medical Microbiology, pp. 749–754. McGraw-Hill (2004)

    Google Scholar 

  2. Myler, P., Fasel, N.: Leishmania: After The Genome. Caister Academic Press (2008)

    Google Scholar 

  3. Jeronimo, S.M.B., DeQueiroz-Sousa, A., Pearson, R.D.: Leishmaniasis. In: Goldman, L., Deds, A. (eds.) Cecil Medicine, 23th edn. ch. 369, Saunders Elsevier, Philadelphia (2007)

    Google Scholar 

  4. Lichtman, J.W., Conchello, J.A.: Fluorescence Microscopy. Nature Publishing Group (2005)

    Google Scholar 

  5. Spring, K.R.: MicroscopyU: Introduction to Fluorescence Microscopy (2010)

    Google Scholar 

  6. Liao, Q., Deng, Y.: An Accurate Segmentation Method For White Blood Cell Images. In: Proceedings IEEE International Symposium on Biomedical Imaging, pp. 245–248 (2002)

    Google Scholar 

  7. Ficarra, E., Cataldo, S.D., Acquaviva, A., Macii, E.: Automated Segmentation of Cells With IHC Membrane Staining. IEEE Transactions on Biomedical Engineering 58(5) (2011)

    Google Scholar 

  8. Jiang, K., Liao, Q., Dai, S.: A Novel White Blood Cell Segmentation Scheme Using Scale-Space Filtering And Watershed Clustering. In: Proceedings of ICMLC (2003)

    Google Scholar 

  9. Park, J., Keller, J.M.: Fuzzy Patch Label Relaxation in Bone Marrow Cell Segmentation. In: International Conference on Computational Cybernetics and Simulation, pp. 1133–1138 (1997)

    Google Scholar 

  10. Begelman, G., Gur, E., Rivlin, E., Rudzsky, M., Zalevsky, Z.: Cell Nuclei Segmentation Using Fuzzy Logic Engine. In: Proceedings IEEE International Conference on Image Processing (2004)

    Google Scholar 

  11. Yu, W., Lee, H.K., Hariharan, S., Bu, W., Ahmed, S.: Level Set Segmentation of Cellular Images Based on Topological Dependence. In: ISAVC (2008)

    Google Scholar 

  12. Yan, P., Zhou, X., Shah, M., Wong, S.T.C.: Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images. IEEE Transaction On Information Technology In Biomedicine 12(1) (2008)

    Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  14. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic Computers, 260–268 (1961)

    Google Scholar 

  15. Neal, R.A., Croft, S.L.: An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. Journal of Antimicrobial Chemotherapy 14(5), 463–475 (1984)

    Article  Google Scholar 

  16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  17. Reynolds, D.: Gaussian Mixture Models. MIT Lincoln Laboratory, MA 02140, USA

    Google Scholar 

  18. Gonzales, Woods: Digital Image Processing, 3rd edn. (DIP/3e) (2008)

    Google Scholar 

  19. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007) ISBN: 0387310738

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nogueira, P.A., Teófilo, L.F. (2012). Automatic Analysis of Leishmania Infected Microscopy Images via Gaussian Mixture Models. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds) Advances in Artificial Intelligence - SBIA 2012. SBIA 2012. Lecture Notes in Computer Science(), vol 7589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34459-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34459-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34458-9

  • Online ISBN: 978-3-642-34459-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics