Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Learning Optimization Algorithm in Graph Theory

Versatile Search for Extremal Graphs Using a Learning Algorithm

  • Conference paper
Learning and Intelligent Optimization (LION 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7219))

Included in the following conference series:

Abstract

Using a heuristic optimization module based upon Variable Neighborhood Search (VNS), the system AutoGraphiX’s main feature is to find extremal or near extremal graphs, i.e., graphs that minimize or maximize an invariant. From the so obtained graphs, conjectures are found either automatically or interactively. Most of the features of the system relies on the optimization that must be efficient but the variety of problems handled by the system makes the tuning of the optimizer difficult to achieve. We propose a learning algorithm that is trained during the optimization of the problem and provides better results than all the algorithms previously used for that purpose.

The authors gratefully acknowledge the support from NSERC (Canada).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aouchiche, M., Bonnefoy, J.-M., Fidahoussen, A., Caporossi, G., Hansen, P., Lacheré, J., Monhait, A.: Variable neighborhood search for extremal graphs. 14. the autographix 2 system. In: Liberti, L., Maculan, N. (eds.) Global Optimization. From Theory to Implementation. Springer Science, NewYork (2006)

    Google Scholar 

  2. Aouchiche, M., Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs 8. variations on graffiti 105. Congressus Numerantium 148, 129–144 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Belhaiza, S., Abreu, N.M.M., Hansen, P., Oliveira, C.S.: Variable neighborhood search for extremal graphs. 11. bounds on algebraic connectivity. In: Hertz, A., Avis, D., Marcotte, O. (eds.) Graph Theory and Combinatorial Optimization. Springer, New York (2005)

    Google Scholar 

  4. Caporossi, G., Cvetković, D., Gutman, I., Hansen, P.: Variable neighborhood search for extremal graphs. 2. finding graphs with extremal energy. Journal of Chemical Information and Computer Sciences 39, 984–996 (1999)

    Google Scholar 

  5. Caporossi, G., Dobrynin, A.A., Gutman, I., Hansen, P.: Trees with palindromic Hosoya polynomials. Graph Theory Notes of New York 37, 10–16 (1999)

    MathSciNet  Google Scholar 

  6. Caporossi, G., Gutman, I., Hansen, P.: Variable neighborhood search for extremal graphs: 4. chemical trees with extremal connectivity index. Computers and Chemistry 23, 469–477 (1999)

    Article  Google Scholar 

  7. Caporossi, G., Gutman, I., Hansen, P., Pavlović, L.: Graphs with maximum connectivity index. Computational Biology and Chemistry 27, 85–90 (2003)

    Article  Google Scholar 

  8. Caporossi, G., Hansen, P.: Finding Relations in Polynomial Time. In: Proceedings of the XVI International Joint Conference on Artificial Intelligence, pp. 780–785 (1999)

    Google Scholar 

  9. Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. 1. the autographix system. Discrete Math. 212, 29–44 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. v. three ways to automate finding conjectures. Discrete Math. 276, 81–94 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cvetković, D., Simić, S., Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. iii. on the largest eigenvalue of color-constrained trees. Linear and Multilinear Algebra 49, 143–160 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fowler, P.W., Hansen, P., Caporossi, G., Soncini, A.: Variable neighborhood search for extremal graph. 7. polyenes with maximum homo-lumo gap. Chemical Physics Letters 342, 105–112 (2001)

    Article  Google Scholar 

  13. Gutman, I., Miljković, O., Caporossi, G., Hansen, P.: Alkanes with small and large randić connectivity indices. Chemical Physics Letters 306, 366–372 (1999)

    Article  Google Scholar 

  14. Hansen, P., Mélot, H.: Variable neighborhood search for extremal graphs. 6. analyzing bounds for the connectivity index. Journal of Chemical Information and Computer Sciences 43, 1–14 (2003)

    Google Scholar 

  15. Hansen, P., Mélot, H.: Variable neighborhood search for extremal graphs. 9. bounding the irregularity of a graph. In: Fajtlowicz, S., Fowler, P., Hansen, P., Janowitz, M., Roberts, F. (eds.) Graphs and Discovery. American Mathematical Society, Providence (2005)

    Google Scholar 

  16. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European J. Oper. Res. 130, 449–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Randić, M.: On characterization of molecular branching. Journal of the American Chemical Society 97, 6609–6615 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caporossi, G., Hansen, P. (2012). A Learning Optimization Algorithm in Graph Theory. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34413-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34412-1

  • Online ISBN: 978-3-642-34413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics