Abstract
Fractional diffusion equations are generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, we develop a difference scheme based on Hermite formula for solving one-dimensional time fractional diffusion equation. Stability and convergence results of the difference scheme are discussed. Finally, a numerical example is carried out to confirm the theoretical results.
The Project Supported by ‘QingLan’ Talent Engineering Funds of Tianshui Normal University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, C.M., Liu, F., Burrage, K.: Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)
Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227(2), 886–897 (2007)
Duan, J.S., Xu, M.Y.: Solution of semiboundless mixed problem of fractional diffusion equation. Appl. Math. J. Chinese Univ. Ser. A 18(3), 259–266 (2003)
Gorenflo, R., Luchko, Y., Mainardi, F.: Wright function as scale-invariant solutions of the diffusionwave equation. J. Comput. Appl. Math. 118, 175–191 (2000)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Henry, B.I., Wearne, S.L.: Fractional reaction-diffusion. Physica A 276, 448–455 (2000)
Lynch, V.E., Carreras, B.A., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)
Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)
Luchko, Y.F., Srivastava, H.M.: The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 29(8), 73–85 (1995)
Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)
Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comp. 191, 12–20 (2007)
Mainardi, F., Luchko, Y.F., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calculus Appl. Anal. 4(2), 153–192 (2001)
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley, New York (1993)
Oldman, K.B., Spanier, J.: The Fractional Calculus. Academic Press (1974)
Podlubny, I.: Fractional Differential Equations. Academic Press (1999)
Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-value Problems. Interscience Publishers, New York (1967)
Scherer, R., Kalla, S.L., Boyadjiev, L., Al-Saqabi, B.: Numerical treatment of fractional heat equations. Appl. Numer. Math. 58, 1212–1223 (2008)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Newark (1993)
Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)
Zhang, W.S.: Finite Difference Methods for Partial Differential Equations in Science computation. Higher Education Press, Beijing (2006)
Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Yx., Ding, H. (2012). Finite Difference Method for Solving the Time Fractional Diffusion Equation. In: Xiao, T., Zhang, L., Fei, M. (eds) AsiaSim 2012. AsiaSim 2012. Communications in Computer and Information Science, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34387-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-34387-2_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34386-5
Online ISBN: 978-3-642-34387-2
eBook Packages: Computer ScienceComputer Science (R0)