Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing 2D Robot Workspace in Parallel with CUDA

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7628))

Abstract

Workspace analysis is one of the most essential problems in robotics, but also has the possibility of being very tricky in complex cases. As the number of degrees of freedom increases, the complexity of the problem grows exponentially in some solutions. One possibility is to develop solutions which approximate the workspace for speedup, but this paper explores the possibility of using graphical processing units to parallelize and speed up a forward kinematics-based solution. Particular real-time applications are discussed. It presents a formal analysis of a simple 2D problem, a solution, and the results of an experiment using the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilar, O.A., Huegel, J.C.: Inverse Kinematics Solution for Robotic Manipulators Using a CUDA-Based Parallel Genetic Algorithm. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 490–503. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Anderson-Sprecher, P., Simmons, R.: Voxel-based motion bouunding and workspace estimation for robot manipulators. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2141–2146 (May 2012)

    Google Scholar 

  3. Bonev, I.A., Ryu, J.: A new approach to orientation workspace analysis of 6-dof parallel manipulators. Mechanism and Machine Theory 36(1), 15–28 (2001)

    Article  MATH  Google Scholar 

  4. Cao, Y., Lu, K., Li, X., Zang, Y.: Accurate numerical methods for computing 2d and 3d robot workspace. International Journal of Advanced Robotic Systems 8(6) (2011)

    Google Scholar 

  5. Craig, J.J.: Manipulator kinematics. In: Introduction to Robotics: Mechanics and Control, 2nd edn., pp. 69–112. Addison Wesley Longman (1955)

    Google Scholar 

  6. Goyal, K., Sethi, D.: An analytical method to find workspace of a robotic manipulator. Journal of Mechanical Engineering 41(1) (2010)

    Google Scholar 

  7. Kessens, C., Smith, D., Osteen, P.: Autonomous self-righting of a generic robot on sloped planar surfaces. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4724–4729 (May 2012)

    Google Scholar 

  8. Langdon, W.B.: A fast high quality pseudo random number generator for nvidia cuda. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009, pp. 2511–2514. ACM, New York (2009)

    Chapter  Google Scholar 

  9. Middleditch, A.E., Stacey, T.W., Tor, S.B.: Intersection algorithms for lines and circles. ACM Trans. Graph. 8(1), 25–40 (1988)

    Article  Google Scholar 

  10. Podlozhnyuk, V.: Parallel mersenne twister. Technical report, nVidia (June 2007)

    Google Scholar 

  11. Weisstein, E.: Circle-line intersection. From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/circle-lineintersection.html (accessed April 27, 2012)

  12. Wise, M.E.: The incomplete beta function as a contour integral and a quickly converging series for its inverse. Biometrika 37(3/4), 208–218 (1950)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kilgo, P., Dixon, B., Anderson, M. (2012). Computing 2D Robot Workspace in Parallel with CUDA. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2012. Lecture Notes in Computer Science(), vol 7628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34327-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34327-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34326-1

  • Online ISBN: 978-3-642-34327-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics