Abstract
This paper presents a new and original model for image browsing and retrieval based on a reactive multi-agent system oriented toward visualization and user interaction. Each agent represents an image. This model simplifies the problem of mapping a high-dimensional feature space onto a 2D screen interface and allows intuitive user interaction. Within a unify and local model, as opposed to global traditional CBIR, we present how agents can interact through an attraction/repulsion model. These forces are computed based on the visual and textual similarities between an agent and its neighbors. This unique model allows to do several tasks, like image browsing and retrieval, single/multiple querying, performing relevance feedback with positive/nagative examples, all with heteregeneous data (image visual content and text keywords). Specific adjustments are proposed to allow this model to work with large image databases. Preliminary results on two image databases show the feasability of this model compared with traditional CBIR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boucher, A., Dang, T.H., Le, T.L.: Classification vs recherche d’information: vers une caractérisation des bases d’images. 12èmes Rencontres de la Société Francophone de Classification (SFC), Montréal (Canada) (2005) (in French)
Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised Learning of Semantic Classes for Image Annotation and Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 394–410 (2007)
Forgáč, M.R.: Decreasing the Feature Space Dimension by Kohonen Self-Organizing Maps. In: 2nd Slovakian Hungarian Joint Symposium on Applied Machine Intelligence, Herľany, Slovakia (2004)
Hu, R., Ruger, S., Song, D., Liu, H., Huang, Z.: Dissimilarity mesures for content-based image retrieval. In: 2008 IEEE International Conference Multimedia and Expo (ICME), Hannover, Germany (2008)
Mangiameli, P., Chen, S.K., West, D.: A Comparison of SOM neural network and hierarchical clustering methods. European Journal of Operational Research 93(2), 402–417 (1996)
Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1075–1088 (2003)
Moghaddam, B., Tian, Q., Lesh, N., Shen, C., Huang, T.S.: Visualization & User-Modeling for Browsing Personal Photo Libraries. International Journal of Computer Vision 56(1/2), 109–130 (2004)
Nguyen, N.V., Boucher, A., Ogier, J.M., Tabbone, S.: Region-Based Semi-automatic Annotation Using the Bag of Words Representation of the Keywords. In: 5th International Conference on Image and Graphics (ICIG), pp. 422–427 (2009)
Nguyen, N.V.: Keyword Visual Representation for Interactive Image Retrieval and Image Annotation. PhD thesis, University of La Rochelle (France) (2011) (in French)
Picard, D., Cord, M., Revel, A.: CBIR in distributed databases using a multi-agent system. In: IEEE International Conference on Image Processing, ICIP (2006)
Plant, W., Schaefer, G.: Visualising Image Database. In: IEEE International Work-Shop on Multimedia Signal Processing, pp. 1–6 (2009)
Renault, V.: Organisation de Société d’Agents pour la Visualisation d’Informations Dynamiques. PhD thesis, University Paris 6, France (2001) (in French)
Rubner, Y., Guibas, L.J., Tomasi, C.: The earth movers distance, multi-dimensional scaling, and color-based image retrieval. In: APRA Image Understanding Workshop, pp. 661–668 (1997)
Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)
Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J.: Gene Clustering Using Self-Organizing Maps and Particle Swarm Optimization. In: IEEE International Workshop on High Performance Computational Biology (2003)
Laaksonen, J., Koskela, M., Oja, E.: PicSOM – Self-organizing image retrieval with MPEG-7 content descriptors. IEEE Transactions on Neural Networks 13(4), 841–853 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hong, H.C., Chiron, G., Boucher, A. (2013). A Multi-agent Model for Image Browsing and Retrieval. In: Nguyen, N., Trawiński, B., Katarzyniak, R., Jo, GS. (eds) Advanced Methods for Computational Collective Intelligence. Studies in Computational Intelligence, vol 457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34300-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-34300-1_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34299-8
Online ISBN: 978-3-642-34300-1
eBook Packages: EngineeringEngineering (R0)