Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multi-agent Model for Image Browsing and Retrieval

  • Conference paper
Advanced Methods for Computational Collective Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 457))

  • 1314 Accesses

Abstract

This paper presents a new and original model for image browsing and retrieval based on a reactive multi-agent system oriented toward visualization and user interaction. Each agent represents an image. This model simplifies the problem of mapping a high-dimensional feature space onto a 2D screen interface and allows intuitive user interaction. Within a unify and local model, as opposed to global traditional CBIR, we present how agents can interact through an attraction/repulsion model. These forces are computed based on the visual and textual similarities between an agent and its neighbors. This unique model allows to do several tasks, like image browsing and retrieval, single/multiple querying, performing relevance feedback with positive/nagative examples, all with heteregeneous data (image visual content and text keywords). Specific adjustments are proposed to allow this model to work with large image databases. Preliminary results on two image databases show the feasability of this model compared with traditional CBIR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boucher, A., Dang, T.H., Le, T.L.: Classification vs recherche d’information: vers une caractérisation des bases d’images. 12èmes Rencontres de la Société Francophone de Classification (SFC), Montréal (Canada) (2005) (in French)

    Google Scholar 

  2. Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised Learning of Semantic Classes for Image Annotation and Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 394–410 (2007)

    Article  Google Scholar 

  3. Forgáč, M.R.: Decreasing the Feature Space Dimension by Kohonen Self-Organizing Maps. In: 2nd Slovakian Hungarian Joint Symposium on Applied Machine Intelligence, Herľany, Slovakia (2004)

    Google Scholar 

  4. Hu, R., Ruger, S., Song, D., Liu, H., Huang, Z.: Dissimilarity mesures for content-based image retrieval. In: 2008 IEEE International Conference Multimedia and Expo (ICME), Hannover, Germany (2008)

    Google Scholar 

  5. Mangiameli, P., Chen, S.K., West, D.: A Comparison of SOM neural network and hierarchical clustering methods. European Journal of Operational Research 93(2), 402–417 (1996)

    Article  MATH  Google Scholar 

  6. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1075–1088 (2003)

    Article  Google Scholar 

  7. Moghaddam, B., Tian, Q., Lesh, N., Shen, C., Huang, T.S.: Visualization & User-Modeling for Browsing Personal Photo Libraries. International Journal of Computer Vision 56(1/2), 109–130 (2004)

    Article  Google Scholar 

  8. Nguyen, N.V., Boucher, A., Ogier, J.M., Tabbone, S.: Region-Based Semi-automatic Annotation Using the Bag of Words Representation of the Keywords. In: 5th International Conference on Image and Graphics (ICIG), pp. 422–427 (2009)

    Google Scholar 

  9. Nguyen, N.V.: Keyword Visual Representation for Interactive Image Retrieval and Image Annotation. PhD thesis, University of La Rochelle (France) (2011) (in French)

    Google Scholar 

  10. Picard, D., Cord, M., Revel, A.: CBIR in distributed databases using a multi-agent system. In: IEEE International Conference on Image Processing, ICIP (2006)

    Google Scholar 

  11. Plant, W., Schaefer, G.: Visualising Image Database. In: IEEE International Work-Shop on Multimedia Signal Processing, pp. 1–6 (2009)

    Google Scholar 

  12. Renault, V.: Organisation de Société d’Agents pour la Visualisation d’Informations Dynamiques. PhD thesis, University Paris 6, France (2001) (in French)

    Google Scholar 

  13. Rubner, Y., Guibas, L.J., Tomasi, C.: The earth movers distance, multi-dimensional scaling, and color-based image retrieval. In: APRA Image Understanding Workshop, pp. 661–668 (1997)

    Google Scholar 

  14. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  15. Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J.: Gene Clustering Using Self-Organizing Maps and Particle Swarm Optimization. In: IEEE International Workshop on High Performance Computational Biology (2003)

    Google Scholar 

  16. Laaksonen, J., Koskela, M., Oja, E.: PicSOM – Self-organizing image retrieval with MPEG-7 content descriptors. IEEE Transactions on Neural Networks 13(4), 841–853 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, H.C., Chiron, G., Boucher, A. (2013). A Multi-agent Model for Image Browsing and Retrieval. In: Nguyen, N., Trawiński, B., Katarzyniak, R., Jo, GS. (eds) Advanced Methods for Computational Collective Intelligence. Studies in Computational Intelligence, vol 457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34300-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34300-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34299-8

  • Online ISBN: 978-3-642-34300-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics