Abstract
The concept of executable documents is attracting growing interest from both academics and publishers since it is a promising technology for the the dissemination of scientific results. Provenance is a kind of metadata that provides a rich description of the derivation history of data products starting from their original sources. It has been used in many different e-Science domains and has shown great potential in enabling reproducibility of scientific results. However, while both executable documents and provenance are aimed at enhancing the dissemination of scientific results, little has been done to explore the integration of both techniques. In this paper, we introduce the design and development of Deep, an executable document environment that generates scientific results dynamically and interactively, and also records the provenance for these results in the document. In this system, provenance is exposed to users via an interface that provides them with an alternative way of navigating the executable document. In addition, we make use of the provenance to offer a document rollback facility to users and help to manage the system’s dynamic resources.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
The eStat Project: Stat-JR, http://www.bristol.ac.uk/cmm/research/estat/
Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Rec. 34(3), 31–36 (2005)
Moreau, L., Missier, P.: The PROV Data Model and Abstract Syntax Notation, http://www.w3.org/TR/prov-dm/ (retrieved March 28, 2012)
de Waard, A.: The Future of the Journal? Integrating research data with scientific discourse. Nature Precedings (713)
Bechhofer, S., Buchan, I., Roure, D.D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides, D., Owen, S., Newman, D., Sufi, S., Goble, C.: Why linked data is not enough for scientists. Future Generation Computer Systems (2011)
Bourne, P., de Waard, A.: Beyond the PDF Workshop (2011), http://sites.google.com/site/beyondthepdf
Gavish, M., Donoho, D.: A Universal Identifier for Computational Results. Procedia Computer Science 4, 637–647 (2011)
Müller, W., Rojas, I., Eberhart, A., Haase, P., Schmidt, M.: A-R-E: The Author-Review-Execute Environment. Procedia Computer Science 4, 627–636 (2011)
Gorp, P.V., Mazanek, S.: SHARE: a web portal for creating and sharing executable research papers. Procedia Computer Science 4, 589–597 (2011)
Nowakowski, P., Ciepiela, E., Hareżlak, D., Kocot, J., Kasztelnik, M., Bartyński, T., Meizner, J., Dyk, G., Malawski, M.: The Collage Authoring Environment. Procedia Computer Science 4, 608–617 (2011)
PREMIS Working Group: Data dictionary for preservation metadata. Technical report (2005)
Moreau, L.: The Foundations for Provenance on the Web. Found. Trends Web Sci. 2(2-3), 99–241 (2010)
Koop, D., Santos, E., Mates, P., Vo, H.T., Bonnet, P., Bauer, B., Surer, B., Troyer, M., Williams, D.N., Tohline, J.E., Freire, J., Silva, C.T.: A Provenance-Based Infrastructure to Support the Life Cycle of Executable Papers. Procedia Computer Science 4, 648–657 (2011)
Bauer, B., Gukelberger, J., Surer, B., Troyer, M.: Publishing provenance-rich scientific papers. In: Procs. TAPP 2011 Theory and Practice of Provenance (2011)
Santos, E., Lins, L.D., Ahrens, J.P., Freire, J., Silva, C.T.: VisMashup: Streamlining the Creation of Custom Visualization Applications. IEEE Trans. Vis. Comput. Graph. 15(6), 1539–1546 (2009)
Myers, J., Marini, L., Kooper, R., McLaren, T., McGrath, R.E., Futrelle, J., Bajcsy, P., Collier, A., Liu, Y., Hampton, S.: A Digital Synthesis Framework for Virtual Observatories, Edinburgh, UK (2008)
Sahoo, S., Groth, P., Hartig, O., Miles, S., Coppens, S., Myers, J., Gil, Y., Moreau, L., Zhao, J., Panzer, M., Garijo, D.: Provenance Vocabulary Mappings. Technical report, W3C Provenance Incubator Group (August 2010)
Sahoo, S., McGuinness, D.: The PROV Ontology: Model and Formal Semantics, http://www.w3.org/TR/prov-o/
Huynh, T., Jewell, M., Keshavarz, A., Michaelides, D., Moreau, L., Yang, H.: The PROV-JSON Serialization, http://users.ecs.soton.ac.uk/tdh/json/
Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C.T., Vo, H.: Vistrails: enabling interactive multiple-view visualizations. In: IEEE Visualization, VIS 2005, pp. 135–142 (October 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, H., Michaelides, D.T., Charlton, C., Browne, W.J., Moreau, L. (2012). DEEP: A Provenance-Aware Executable Document System. In: Groth, P., Frew, J. (eds) Provenance and Annotation of Data and Processes. IPAW 2012. Lecture Notes in Computer Science, vol 7525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34222-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-34222-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34221-9
Online ISBN: 978-3-642-34222-6
eBook Packages: Computer ScienceComputer Science (R0)