Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards an Intelligent Framework to Understand and Feed the Web

  • Conference paper
Business Information Systems Workshops (BIS 2012)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 127))

Included in the following conference series:

  • 1397 Accesses

Abstract

The Web is becoming a mirror of the “real” physical world. More and more aspects of our life move to the Web, thus also transforming this world. And the diversity of ways to communicate over the Internet has enormously grown. In this context communicating the right thing at the right time in the right way to the right person has become a remarkable challenge. In this conceptual paper we propose a framework to apply semantic technologies in combination with statistical and learning methods on Web and social media data to build a decision support framework. This framework should help professionals as well as normal users to optimize the spread of their information and the potential impact of this information on the Web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mulpuru, S., Harteveldt, H.H., Roberge, D.: Five retail ecommerce trends to watch in 2011. Forrester Research Report (2011)

    Google Scholar 

  2. Hendler, J., Shadbolt, N., Hall, W., Berners-Lee, T., Weitzner, D.: Web science: an interdisciplinary approach to understanding the web. Commun. ACM 51(7), 60–69 (2008)

    Article  Google Scholar 

  3. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The Web as a Graph: Measurements, Models, and Methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM TKDD 1(1) (2007)

    Google Scholar 

  5. Bringmann, B., Berlingerio, M., Bonchi, F., Gionis, A.: Learning and predicting the evolution of social networks. IEEE Intelligent Systems 25, 26–35 (2010)

    Article  Google Scholar 

  6. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proc. KDD 2009, pp. 497–506 (2009)

    Google Scholar 

  7. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proc. WSDM 2011, pp. 177–186 (2011)

    Google Scholar 

  8. Berendt, B.: Text mining for news and blogs analysis. In: Encyclopedia of Machine Learning, pp. 968–972. Springer (2010)

    Google Scholar 

  9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graphs and graph transformation based on adhesive HLR categories. Fundam. Inf. 74, 31–61 (2006)

    Google Scholar 

  10. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. Fundam. Inf. 74, 63–84 (2006)

    Google Scholar 

  11. Jin, Y., Decker, S., Wiederhold, G.: Ontowebber: Model-driven ontology-based web site management. In: Semantic Web Working Symposium, SWWS (2001)

    Google Scholar 

  12. Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing semantic content for the web. IEEE Internet Computing 6(4), 80–87 (2002)

    Article  Google Scholar 

  13. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., Lee, R.: Media Meets Semantic Web – How the BBC Uses DBpedia and Linked Data to Make Connections. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 723–737. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: Owlim: A family of scalable semantic repositories. Education 2(1), 33–42 (2011)

    Google Scholar 

  15. Kirtis, A.K., Karahan, F.: To be or not to be in social media arena as the most cost-efficient marketing strategy after the global recession. Procedia - Social and Behavioral Sciences 24, 260–268 (2011); The Proceedings of 7th International Strategic Management Conference

    Article  Google Scholar 

  16. Mangold, W.G., Faulds, D.J.: Social media: The new hybrid element of the promotion mix. Business Horizons 52(4), 357–365 (2009)

    Article  Google Scholar 

  17. Weinberg, B.D., Pehlivan, E.: Social spending: Managing the social media mix. Business Horizons 54(3), 275–282 (2011)

    Article  Google Scholar 

  18. Fotis, J., Buhalis, D., Rossides, N.: Social media impact on holiday travel planning: The case of the russian and the fsu markets. International Journal of Online Marketing (IJOM) 1, 1–19 (2011)

    Article  Google Scholar 

  19. Piazzi, R., Baggio, R., Neidhardt, J., Werthner, H.: Destinations and the web: a network analysis view. Information Technology & Tourism 13(3) (2011)

    Google Scholar 

  20. Bauereiss, T., Leiter, B., Fensel, D.: Effective and efficient online communication. Technical report, STI Innsbruck, Innsbruck (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fensel, A., Neidhardt, J., Pobiedina, N., Fensel, D., Werthner, H. (2012). Towards an Intelligent Framework to Understand and Feed the Web. In: Abramowicz, W., Domingue, J., Węcel, K. (eds) Business Information Systems Workshops. BIS 2012. Lecture Notes in Business Information Processing, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34228-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34228-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34227-1

  • Online ISBN: 978-3-642-34228-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics