Abstract
Visual recognition of human fall incidents in video clips has been an active research issue in recent years, However, most published methods cannot effectively differentiate between fall-down and fall-like incidents such as sitting and squatting. In this paper, we present a novel shadow-assistant method for detecting human fall. Normally, complex 3-D models are used to estimate the human height. However, to reduce the high computational cost, only the information of moving shadow is used for this context. Because the system is based on a combination of shadow-assistant height estimation, and a cascade of SVM classifiers, it can distinguish between fall-down and fall-like incidents with a high degree of accuracy from very short sequence of 1-10 frames. Our experimental results demonstrate that under bird’s-eye view camera setting, the proposed system still can achieve 100% detect rate and a low false alarm rate, while the detection rate of other fall detection schemes have been dropped dramatically.
This work was supported by National Science Council of R.O.C. under contract NSC 100-222-E-011-134.
Chapter PDF
Similar content being viewed by others
Keywords
References
Horprasert, T., Harwood, D., Davis, L.: A Statistical Approach for Real-Time Robust Background Subtraction and Shadow Detection. In: IEEE International Conference on Computer Vision, ICCV 1999, Frame-Rate Workshop, pp. 1–19. IEEE Press, New York (1999)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, pp. 886–893. IEEE Press, New York (2005)
Bobick, A., Davis, J.: The Recognition of Human Movement Using Temporal Template. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 257–267 (2001)
Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Fall Detection from Human Shape and Motion History Using Video Surveillance. In: the 21st International Conference on Advanced Information Networking and Applications, Niagara Falls, Canada, pp. 875–880. IEEE Press, New York (2007)
Hsu, Y.T., Liao, H.Y., Chen, M.C.C., Hsieh, J.W.: Video-based Human Movement Analysis and Its Application to Surveillance Systems. IEEE Transactions on Multimedia 10, 372–392 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, YT., Lin, YR., Fang, WH. (2012). A Novel Shadow-Assistant Human Fall Detection Scheme Using a Cascade of SVM Classifiers. In: Gimel’farb, G., et al. Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2012. Lecture Notes in Computer Science, vol 7626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34166-3_78
Download citation
DOI: https://doi.org/10.1007/978-3-642-34166-3_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34165-6
Online ISBN: 978-3-642-34166-3
eBook Packages: Computer ScienceComputer Science (R0)