Abstract
Recently, two-dimensional principal component analysis (2D-PCA) and its variants have been proposed by several researchers. In this paper, we summarize their 2DPCA variants, show some equivalence among them, and present a unified view in which the non-iterative 2DPCA variants are interpreted as the non-iterative approximate algorithms for the iterative 2DPCA variants, i.e., the non-iterative 2DPCA variants are derived as the first iterations of the iterative algorithm started from different initial settings. Then we classify the non-iterative 2DPCA variants on the basis of their algorithmic patterns and propose a new non-iterative 2DPCA algorithm based on the classification. The effectiveness of the proposed algorithm is experimentally demonstrated on three publicly accessible face image databases.
Chapter PDF
Similar content being viewed by others
Keywords
References
Yang, J., Yang, J.-Y.: From Image Vector to Matrix: A Straightforward Image Projection Technique - IMPCA vs. PCA. Pattern Recognition 35(9), 1997–1999 (2002)
Yang, J., Zhang, D., Frangi, A.F., Yang, J.-Y.: Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans. PAMI 26(1), 131–137 (2004)
Wang, L., Wang, X., Zhang, X., Feng, J.: The equivalence of two-dimensional PCA to line-based PCA. Pattern Recogn. Lett. 26(1), 57–60 (2005)
Zhang, D., Chen, S., Liu, J.: Representing Image Matrices: Eigenimages Versus Eigenvectors. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 659–664. Springer, Heidelberg (2005)
Gao, Q.: Is two-dimensional PCA equivalent to a special case of modular PCA? Pattern Recogn. Lett. 28(10), 1250–1251 (2007)
Ye, J., Janardan, R., Li, Q.: GPCA: An Efficient Dimension Reduction Scheme for Image Compression and Retrieval. In: KDD, pp. 354–363. ACM, New York (2004)
Kong, H., Li, X., Wang, X., Teoh, E.K., Wang, J.-G., Venkateswarlu, R.: Generalized 2D Principal Component Analysis. In: Proc. IJCNN, pp. 108–113 (2005)
Zhang, D., Zhou, Z.-H. (2D)2PCA: Two-Directional Two-Dimensional PCA for Efficient Face Representation and Recognition. Neurocomputing 69(1-3), 224–231 (2005)
Zhang, D., Chen, S., Liu, J.: Representing Image Matrices: Eigenimages Versus Eigenvectors. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 659–664. Springer, Heidelberg (2005)
Benito, M., Peña, D.: A Fast Approach for Dimensionality Reduction with Image Data. Pattern Recognition 38(12), 2400–2408 (2005)
Xu, A., Jin, X., Jiang, Y., Guo, P.: Complete Two-Dimensional PCA for Face Recognition. In: Proc. ICPR, vol. (3), pp. 481–484 (2006)
Xu, D., Yan, S., Zhang, L., Li, M., Ma, W., Liu, Z., Zhang, H.: Parallel Image Matrix Compression for Face Recognition. In: MMM 2005, pp. 232–238. IEEE Computer Society, Washington (2005)
Zuo, W., Zhang, D., Wang, K.: Bidirectional PCA with Assembled Matrix Distance Metric for Image Recognition. IEEE trans. SMC-B36(4), 863–872 (2006)
Wen, Y., Shi, P.: Image PCA: A New Approach for Face Recognition. In: ICASSP 2007, vol. (1), pp. 1241–1244. IEEE (2007)
Lu, C., Liu, W., Liu, X., An, S.: Double Sides 2DPCA for Face Recognition. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 446–459. Springer, Heidelberg (2008)
Yongxin Taylor Xi, Y.T., Ramadge, P.J.: Separable PCA for Image Classification. In: ICASSP, pp. 1805–1808. IEEE (2009)
Ye, J.: Generalized Low Rank Approximations of Matrices. Mach. Learn. 61(1-3), 167–191 (2005)
Yang, J., Xu, Y., Yang, J.-Y.: Bi-2DPCA: A Fast Face Coding Method for Recognition. In: Pattern Recognition Recent Advances, pp. 313–340. InTech (2010)
Inoue, K., Urahama, K.: Equivalence of Non-Iterative Algorithms for Simultaneous Low Rank Approximations of Matrices. In: Proc. CVPR, pp. 154–159. IEEE (2006)
Samaria, F.S., Harter, A.C.: Parameterisation of a Stochastic Model for Human Face Identification. In: Proc. 2nd IEEE Workshop on Applications of Computer Vision, pp. 138–142 (1994)
Caltech Faces, http://www.vision.caltech.edu/html-files/archive.html
Graham, D.B., Allinson, N.M.: Characterizing Virtual Eigen Signatures for General Purpose Face Recognition. Face Recognition: From Theory to Applications 163, 446–456 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Inoue, K., Hara, K., Urahama, K. (2012). A Unified View of Two-Dimensional Principal Component Analyses. In: Gimel’farb, G., et al. Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2012. Lecture Notes in Computer Science, vol 7626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34166-3_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-34166-3_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34165-6
Online ISBN: 978-3-642-34166-3
eBook Packages: Computer ScienceComputer Science (R0)