Abstract
We propose a method for engine configuration diagnostics based on clustering of engine parameters. The method is tested using simulation of PID controller parameters generated and selected using a genetic algorithm. The parameter analysis is based on a state-of-the art method using multivariate extreme value statistics for outlier detection. This method is modified using a variational mixture model which automatically defines a number of Gaussian kernels and replaces a Gaussian mixture model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agovic, A., Banerjee, A., Ganguly, A.R., Protopopescu, V.A.: Anomaly detection in transportation corridors using manifold embedding. In: Proceedings of the First International Workshop on Knowledge Discovery from Sensor Data, ACM KDD Conference, San Jose, CA (2007)
Alander, J.T.: Indexed Bibliography of Genetic Algorithms in Control, Report No. 94-1-CONTROL, University of Vaasa, Department of Information Technology and Production Economics, University of Vaasa (1995), http://lipas.uwasa.fi/~TAU/reports/report94-1/gaCONTROLbib.pdf
Alander, J.T.: Indexed Bibliography of Genetic Algorithms in Machine Learning, Report No. 94-1-ML, Department of Electrical Engineering and Automation, University of Vaasa (2007), http://lipas.uwasa.fi/~TAU/reports/report94-1/gaMLbib.pdf
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A Survey. ACM Computing Surveys 41(3), 1–72 (2009)
Clifton, D.A.: Condition monitoring of gas-turbine engines. Transfer Report, Department of Engineering Science, University of Oxford (2005)
Clifton, D.A., Hugueny, S., Tarassenko, L.: Novelty detection with multivariate extreme value statistics. Journal of Signal Processing Systems 65, 371–389 (2011)
Haugen, F., Fjelddalen, E., Dunia, R., Edgar, T.F.: Demonstrating PID control principles using an Air Heater and LabVIEW. CACHE News (Computer Aids for Chemical Engineering) (Winter 2007)
Hugueny, S., Clifton, D.A., Tarassenko, L.: Probabilistic Patient Monitoring with Multivariate, Multimodal Extreme Value Theory. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2010. CCIS, vol. 127, pp. 199–211. Springer, Heidelberg (2011) (Invited article, from IEEE Biomedical Engineering Systems and Technologies)
Lewis, P.H., Yang, C.: Basic Control Systems Engineering. Prentice-Hall Inc. (1997)
Mantere, T., Alander, J.T.: Evolutionary Software Engineering, a Review. Applied Soft Computing 5(3), 315–331 (2005)
Mohamed, F.A., Koivo, H.N.: Diesel engine systems with genetic algorithm self tuning PID controller. Technical Report, Control Engineering Lab, Helsinki University of Technology (2005)
Olsson, J.: Automatic tuning of control parameters for single speed engines. Master’s Thesis. Stockholm, The Royal Institute of Technology, November 22 (2004)
Pedersen, G.K.M.: Towards automatic controller design using multi-objective evolutionary algorithms. Ph.D. Thesis, Department of Control Engineering, Aalborg University (2005)
Rakopoulos, C.D., Giakoumis, E.G.: Availability analysis of a turbocharged diesel engine operating under transient load conditions. Energy 29, 1085–1104 (2004)
Roberts, S.J.: Extreme value statistics for novelty detection in biomedical data processing. In: IEE Proceedings - Science, Measurement and Technology, vol. 147, pp. 363–367 (2000)
Sundaram, I.S., Strachan, I.G.D., Clifton, D.A., Tarassenko, L., King, S.: Aircraft engine health monitoring using density modeling and extreme value statistics. In: Proc. 6th Intern. Conference on Condition Monitoring and Machinery Failure Prevention Technologies, Dublin, Ireland, pp. 919–930 (2009)
Variational Bayesian Expectation Maximization for Gaussian Mixture Models, http://www.cs.ubc.ca/~murphyk/Software/VBEMGMM/index.html
Törmänen, P.: Evaluating the benefit of fuzzy logic for PID-control by means of genetic algorithms - case: frequency controller. University of Vaasa. Master’s thesis 31-32 (1997)
Åström, K., Hägglund T. H.: PID controllers: Theory, Design and Tuning. Instrument Society of America (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vesterback, J. et al. (2012). Engine Parameter Outlier Detection: Verification by Simulating PID Controllers Generated by Genetic Algorithm. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-34156-4_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34155-7
Online ISBN: 978-3-642-34156-4
eBook Packages: Computer ScienceComputer Science (R0)