Nothing Special   »   [go: up one dir, main page]

Skip to main content

Grammar Precompression Speeds Up Burrows–Wheeler Compression

  • Conference paper
String Processing and Information Retrieval (SPIRE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7608))

Included in the following conference series:

Abstract

Text compression algorithms based on the Burrows–Wheeler transform (BWT) typically achieve a good compression ratio but are slow compared to Lempel–Ziv type compression algorithms. The main culprit is the time needed to compute the BWT during compression and its inverse during decompression. We propose to speed up BWT-based compression by performing a grammar-based precompression before the transform. The idea is to reduce the amount of data that BWT and its inverse have to process. We have developed a very fast grammar precompressor using pair replacement. Experiments show a substantial speed up in practice without a significant effect on compression ratio.

Supported by Academy of Finland grant 118653 (ALGODAN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abel, J.: Post BWT stages of the Burrows-Wheeler compression algorithm. Softw., Pract. Exper. 40(9), 751–777 (2010)

    MathSciNet  Google Scholar 

  2. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows–Wheeler Transform: Data Compression Suffix Arrays, and Pattern Matching. Springer (2008)

    Google Scholar 

  3. Bentley, J.L., McIlroy, M.D.: Data compression with long repeated strings. Inf. Sci. 135(1-2), 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cannane, A., Williams, H.E.: General-purpose compression for efficient retrieval. JASIST 52(5), 430–437 (2001)

    Article  Google Scholar 

  5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fariña, A., Brisaboa, N.R., Navarro, G., Claude, F., Places, Á.S., Rodríguez, E.: Word-based self-indexes for natural language text. ACM Trans. Inf. Syst. 30(1), 1 (2012)

    Article  Google Scholar 

  7. Ferragina, P., Manzini, G.: On compressing the textual web. In: Proc. 3rd Conference on Web Search and Web Data Mining (WSMD), pp. 391–400. ACM (2010)

    Google Scholar 

  8. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Slashing the time for BWT inversion. In: Proc. Data Compression Conference, pp. 99–108. IEEE CS (2012)

    Google Scholar 

  9. Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88, 1722–1732 (2000)

    Article  Google Scholar 

  10. Mahoney, M.: Large text compression benchmark (July 10, 2012), http://mattmahoney.net/dc/text.html

  11. Manber, U.: A text compression scheme that allows fast searching directly in the compressed file. ACM Trans. Inf. Syst. 15(2), 124–136 (1997)

    Article  Google Scholar 

  12. Skibinski, P., Grabowski, S., Deorowicz, S.: Revisiting dictionary-based compression. Softw., Pract. Exper. 35(15), 1455–1476 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kärkkäinen, J., Mikkola, P., Kempa, D. (2012). Grammar Precompression Speeds Up Burrows–Wheeler Compression. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds) String Processing and Information Retrieval. SPIRE 2012. Lecture Notes in Computer Science, vol 7608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34109-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34109-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34108-3

  • Online ISBN: 978-3-642-34109-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics