Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modifying Feasible SQP Method for Inequality Constrained Optimization

  • Conference paper
Information Computing and Applications (ICICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7473))

Included in the following conference series:

  • 5204 Accesses

Abstract

This paper is concerned with an improved feasible sequential quadratic programming (FSQP) method which solves an inequality constrained nonlinear optimization problem. As compared with the existing SQP methods, at each iteration of our method, the base direction is only necessary to solve a equality constrained quadratic programming, the feasible direction and the high-order revised direction which avoids Maratos effect are obtained by explicit formulas. Furthermore, the global and superlinear convergence are proved under some suitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boggs, P.T., Tolle, J.W.: A Strategy for Global Convergence in a Sequential Quadratic Programming Algorithm. SIAM J. Num. Anal. 26, 600–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Han, S.P.: Superlinearly Convergent Variable Metric Algorithm for General Nonlinear Programming Problems. Mathematical Programming 11, 263–282 (1976)

    Article  MathSciNet  Google Scholar 

  3. Powell, M.J.D.: A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. In: Waston, G.A. (ed.) Numerical Analysis, pp. 144–157. Springer, Berlin (1978)

    Chapter  Google Scholar 

  4. Panier, E.R., Tits, A.L.: On Combining Feasibility, Descent and Superlinear Convergence in Inequality Constrained Optimization. Mathematical Programming 59, 261–276 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Spellucci, P.: An SQP Method for General Nonlinear Programs Using Only Equality Constrained Subproblems. Mathematical Programming 82, 413–448 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Lawarence, C.T., Tits, A.L.: A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm. SIAM J. Optim. 11, 1092–1118 (2001)

    Article  MathSciNet  Google Scholar 

  7. Qi, L., Yang, Y.F.: Globally and Superlinearly Convergent QP-free Algorithm for Nonlinear Constrained Optimization. JOTA 113, 297–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhu, Z.B., Zhang, W.D., Geng, Z.J.: A feasible SQP method for nonlinear programming. Applied Mathematics and Computation 215, 3956–3969 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luo, Z.J., Chen, G.H., Liang, J.L.: A variant of feasible descent SQP method for inequality constrained optimization. International Journal of Pure and Applied Mathematics 61(2), 161–168 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Gu, C., Zhu, D.T.: A non-monotone line search multidimensional filter-SQP method for general nonlinear programming. Numerical Algorithms 56(4), 537–559 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hao, C.L., Liu, X.W.: A trust-region filter-SQP method for mathematical programs with linear complementarity constraints. Journal of Industrial and Management Optimization (JIMO) 7(4), 1041–1055 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hao, C.L., Liu, X.W.: Globao convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra Control and Optimization 2(1), 19–29 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Binnans, J.F., Launay, G.: Sequential quadratic programming with penalization the displacement. SIAM J. Optimization 54(4), 796–812 (1995)

    Google Scholar 

  14. Jian, J.B., Tang, C.M.: An SQP Feasible Descent Algorithm for Nonlinear Inequality Constrained Optimization Without Strict Complementarity. An International Journal Computers and Mathematics with Application 49, 223–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, Z., Zhu, Z., Chen, G. (2012). Modifying Feasible SQP Method for Inequality Constrained Optimization. In: Liu, B., Ma, M., Chang, J. (eds) Information Computing and Applications. ICICA 2012. Lecture Notes in Computer Science, vol 7473. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34062-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34062-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34061-1

  • Online ISBN: 978-3-642-34062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics