Nothing Special   »   [go: up one dir, main page]

Skip to main content

Local Stable Mechanism for Particle Swarm Optimization Algorithm

  • Conference paper
Information Computing and Applications (ICICA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 308))

Included in the following conference series:

  • 1857 Accesses

Abstract

In this paper, an improved particle swarm optimization algorithm is presented based on the local stable mechanism. The novelty of this kind of particle swarm optimization algorithm is that a certain part of the population stays at a stable level, while the rest part of the population uses the advantages of harmony search. The performance of this algorithm shows that this algorithm can effectively avoid the premature convergence problem. Moreover, this algorithm improves the ability of searching an optimum solution and increases the convergent speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Michalewicz, Z.: Genetic Algorithm+ Dada Structures=Evolution Programs. Springer, Berlin (1992)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Network, pp. 1942–1948. IEEE Press, New York (1995)

    Chapter  Google Scholar 

  3. Yang, Q., Li, L., He, G.: An improved particle swarm optimization for constrained optimization problems. International Journal of Advancements in Computing Technology 3, 216–223 (2011)

    Google Scholar 

  4. Wei, B., Li, Y.-X.: A Particle Swarm Optimization Algorithm Based on Stable Strategy. Computer Science 38, 221–223 (2011)

    Google Scholar 

  5. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)

    Google Scholar 

  6. Xu, X., Li, Y.X.: Improved Particle Swarm Optimization Algorithm Based on Theory of Molecular Motion. Journal of System Simulation 21, 1904–1907 (2009)

    Google Scholar 

  7. Xiaoqin, Z., Weiming, H., Wei, Q.: Multiple Object Tracking Via Species-Based Particle Swarm Optimization. IEEE Transactions on Circuits and Systems for Video Technology 20, 1590–1602 (2010)

    Article  Google Scholar 

  8. Angeline, P.J.: Evolutionary Optimization versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Proceedings of the Seventh Annual Conference on Evolutionary Programming, pp. 601–610. Springer, Germany (1998)

    Chapter  Google Scholar 

  9. Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 84–89. IEEE Press, Australia (1998)

    Google Scholar 

  10. Stacey, A., Jancic, M., Grundy, I.: Particle swarm optimization with mutation. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1425–1430. IEEE Press, Australia (1998)

    Google Scholar 

  11. Dawkins, R.: The Selfish Gene. Oxford University Press (1997) (reprinted)

    Google Scholar 

  12. Wang, C.-M., Huang, Y.-F.: Self-adaptive harmony search algorithm for optimization. Expert Systems with Applications 37, 2826–2837 (2010)

    Article  Google Scholar 

  13. Zou, D., Gao, L., Wu, J.: A novel global harmony search algorithm for reliability problems. Computers & Industrial Engineering 58, 307–316 (2010)

    Article  Google Scholar 

  14. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, B., Li, Y., Shen, D., Yu, F., Xu, X. (2012). Local Stable Mechanism for Particle Swarm Optimization Algorithm. In: Liu, C., Wang, L., Yang, A. (eds) Information Computing and Applications. ICICA 2012. Communications in Computer and Information Science, vol 308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34041-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34041-3_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34040-6

  • Online ISBN: 978-3-642-34041-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics