Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lie Symmetry Analysis for the Degasperis-Procesi Equation Based on Maple

  • Conference paper
Information Computing and Applications (ICICA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 308))

Included in the following conference series:

Abstract

In this paper, the Lie symmetry analysis is performed for the Degasperis-Procesi equation. By taking the package Desolv in maple and Lie group method, the exact solutions from the symmetry transformations are provided. Such exact explicit solutions are important in both applications and the theory of nonlinear science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Kortewegde Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  2. Li, Y.S.: Soliton and integrable systems. In: Advanced Series in Nonlinear Science, Shanghai Scientific and Technological Education Publishing House, Shang Hai (1999) (in Chinese)

    Google Scholar 

  3. Hirota, R., Satsuma, J.: A variety of nonlinear network equations generated from the Backlund transformation for the Tota lattice. Suppl. Prog. Theor. Phys. 59, 64–100 (1976)

    Article  MathSciNet  Google Scholar 

  4. Misirli, E., Gurefe, Y.: Exact solutions of the Drinfel‘d-Sokolov-Wilson equation using the Exp-function method. APPl. Math. ComPut., 2623–2627 (2010)

    Google Scholar 

  5. Geng, X.G., Wu, L.H.: Commun. Darboux Transformation and Explicit Solutions for Drinfel‘d-Sokolov-Wilson equation. Theor. Phys., 1090–1096 (2010)

    Google Scholar 

  6. Craddock, M.: Fundamental solutions, transition densities and the integration of Lie symmetries. Differential Equations 246, 2538–2560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30(10), 2201–2213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarkson, P.: New similarity reductions for the modified Boussinesq equation. J. Phys. A: Gen. 22, 2355–2367 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lixin, T., Lu, S.: Singular solitons of generalized Camassa-Holm models. Chaos, Solitons and Fraetals 32(2), 780–799 (2007)

    Article  MATH  Google Scholar 

  10. Vu, K.T., Butcher, J., Carminati, J.: Similarity solutions of partial differential equations using DESOLV. Computer Physics Communicatios (2007)

    Google Scholar 

  11. Hereman, W., et al.: Direct methods and symbolic software for conservation laws of nonlinear equations. Advances in Nonlinear Waves and Symbolic Computation, 19–78 (2009)

    Google Scholar 

  12. Liu, H., Li, J.B., Zhang, Q.: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation. Journal of Computational and Applied Mathematics (2008)

    Google Scholar 

  13. Liu, H., Li, J.B.: Lie group classifications and exact solutions for two variable-coefficient equation. Applied Mathematics and Computation, 2927–2935 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Wang, T. (2012). Lie Symmetry Analysis for the Degasperis-Procesi Equation Based on Maple. In: Liu, C., Wang, L., Yang, A. (eds) Information Computing and Applications. ICICA 2012. Communications in Computer and Information Science, vol 308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34041-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34041-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34040-6

  • Online ISBN: 978-3-642-34041-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics