Nothing Special   »   [go: up one dir, main page]

Skip to main content

Conceptualizing and Specifying Key Performance Indicators in Business Strategy Models

  • Conference paper
Conceptual Modeling (ER 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7532))

Included in the following conference series:

Abstract

Key Performance Indicators (KPI) measure the performance of an organization relative to its objectives. To monitor organizational performance relative to KPIs, such KPIs need to be manually implemented in the form of data warehouse queries, to be used in dashboards or scorecards. Moreover, dashboards include little if any information about business strategy and offer a scattered view of KPIs and what do they mean relative to business concerns. In this paper, we propose an integrated view of strategic business models and conceptual data warehouse models. The main benefit of our proposal is that it links strategic business models to the data through which objectives can be monitored and assessed. In our proposal, KPIs are defined in Structured English and are implemented in a semi-automatic way, allowing for quick modifications. This enables real-time monitoring and what-if analysis, thereby helping analysts compare expectations with reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Composite Indicators for Business Intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 448–458. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Cabot, J., Pau, R., Raventós, R.: From uml/ocl to sbvr specifications: A challenging transformation. Information Systems 35(4), 417–440 (2010)

    Article  Google Scholar 

  3. Eckerson, W.: Performance dashboards: measuring, monitoring, and managing your business. Wiley (2010)

    Google Scholar 

  4. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data warehouse design. In: DOLAP 2005, pp. 47–56 (2005)

    Google Scholar 

  5. Hill, T., Westbrook, R.: Swot analysis: it’s time for a product recall. Long Range Planning 30(1), 46–52 (1997)

    Article  Google Scholar 

  6. Jiang, L., Barone, D., Amyot, D., Mylopoulos, J.: Strategic Models for Business Intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 429–439. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Kaplan, R., Norton, D.: The balanced scorecard–measures that drive performance. Harvard Business Review 70(1) (1992)

    Google Scholar 

  8. Kaplan, R., Norton, D.: Strategy maps: Converting intangible assets into tangible outcomes. Harvard Business Press (2004)

    Google Scholar 

  9. Luján-Mora, S., Trujillo, J., Song, I.: A UML profile for multidimensional modeling in data warehouses. Data & Knowledge Engineering 59(3), 725–769 (2006)

    Article  Google Scholar 

  10. Marr, B., Schiuma, G., Neely, A.: Intellectual capital–defining key performance indicators for organizational knowledge assets. Business Process Management Journal 10(5), 551–569 (2004)

    Article  Google Scholar 

  11. Maté, A., Trujillo, J.: A Trace Metamodel Proposal Based on the Model Driven Architecture Framework for the Traceability of User Requirements in Data Warehouses. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 123–137. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Object Management Group: A Proposal for an MDA Foundation Model (2005)

    Google Scholar 

  13. Object Management Group: SBVR specification (2008)

    Google Scholar 

  14. Pardillo, J., Mazón, J.N., Trujillo, J.: Extending OCL for OLAP querying on conceptual multidimensional models of data warehouses. Information Sciences 180(5), 584–601 (2010)

    Article  Google Scholar 

  15. Silva Souza, V.E., Mazón, J.-N., Garrigós, I., Trujillo, J., Mylopoulos, J.: Monitoring strategic goals in data warehouses with awareness requirements. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 1075–1082. ACM (2012)

    Google Scholar 

  16. Yu, E.: Modeling strategic relationships for process reengineering. Social Modeling for Requirements Engineering (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maté, A., Trujillo, J., Mylopoulos, J. (2012). Conceptualizing and Specifying Key Performance Indicators in Business Strategy Models. In: Atzeni, P., Cheung, D., Ram, S. (eds) Conceptual Modeling. ER 2012. Lecture Notes in Computer Science, vol 7532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34002-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34002-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34001-7

  • Online ISBN: 978-3-642-34002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics