Nothing Special   »   [go: up one dir, main page]

Skip to main content

Probabilistic Recognition of Complex Event

  • Conference paper
Computer Vision Systems (ICVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6962))

Included in the following conference series:

Abstract

This paper describes a complex event recognition approach with probabilistic reasoning for handling uncertainty. The first advantage of the proposed approach is the flexibility of the modeling of composite events with complex temporal constraints. The second advantage is the use of probability theory providing a consistent framework for dealing with uncertain knowledge for the recognition of complex events. The experimental results show that our system can successfully improve the event recognition rate. We conclude by comparing our algorithm with the state of the art and showing how the definition of event models and the probabilistic reasoning can influence the results of the real-time event recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vu, T., Bremond, F., Thonnat, M.: Automatic Video Interpretation: A Novel Algorithm for Temporal Scenario Recognition. In: The Eighteenth International Joint Conference on Artificial Intelligence, Mexico (2003)

    Google Scholar 

  2. Ryoo, M.S., Aggarwal, J.K.: Semantic Representation and Recognition of Continued and Recursive Human Activities. In: International Journal of Computer Vision (2009)

    Google Scholar 

  3. Chen, L., Nugent, C.: Ontology-based recognition in intelligent pervasive environments. International Journal of Web Information Systems 5, 410–430 (2009)

    Article  Google Scholar 

  4. Oliver, N., Horvitz, E.: A comparison of hMMs and dynamic bayesian networks for recognizing office activities. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 199–209. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Hoey, J., Bertoldi, P.P., Mihailidis: Assisting persons with dementia during handwashing using a partially observable markov decision process. In: International Conference on Computer Vision Systems, ICVS (2007)

    Google Scholar 

  6. Kuettel, D., Breitenstein, M., Van Gool, L., Ferrari, V.: Whats going on? Discovering Spatio-Temporal Dependencies in Dynamic Scenes. In: CVPR (2010)

    Google Scholar 

  7. Gong, Xiang, T.: Recognition of group activities using dynamic probabilistic networks. In: The 9th International Conference on Computer Vision (2003)

    Google Scholar 

  8. Duong, T.V., Bui, H.H., Phung, D.Q., Venkatesh, S.: Activity recognition and abnormality detection with the switching hidden semi-markov model. In: CVPR (2005)

    Google Scholar 

  9. Ivanov, Y., Bobick, A., Mihailidis: Recognition of visual activities interactions by stochastic parsing. IEEE Trans. Patt. Anal. Mach. Intel. 1, 838–845 (2005)

    Google Scholar 

  10. Davis, L., Harwood, D., Vidmap, D.: ideo monitoring of activity with prolog. In: AVSS (2005)

    Google Scholar 

  11. Reddy, S., Gal, Y., Shieber, S.M.: Recognition of users’ activities using constraint satisfaction. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 415–421. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Nevatia, R., Hongeng, S., Bremond, F.: Video-based event recognition:activity representation and probabilistic recognition methods. In: CVIU, vol. 2, pp. 129–162 (2004)

    Google Scholar 

  13. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM (1983)

    Google Scholar 

  14. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  15. Avanzi, A., Bremond, F., Tornieri, C., Thonnat, M.: Design and Assessment of an Intelligent Activity Monitoring Platform. EURASIP (2005)

    Google Scholar 

  16. Liao, L., Fox, D., Kautz, H.: Location-based activity recognition using Relational Markov Networks. In: IJCAI (2005)

    Google Scholar 

  17. Pentney, W., Popescu, A., Wang, S., Kautz, H., Philipose, M.: Sensor-based understanding of daily life via large-scale use of common sense. In: AAAI 2006 (2006)

    Google Scholar 

  18. Chau, D.P., Bremond, F., Thonnat, M.: Robust Mobile Object Tracking Based on Multiple Feature Similarity and Trajectory Filtering. In: VISSAP (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romdhane, R., Boulay, B., Bremond, F., Thonnat, M. (2011). Probabilistic Recognition of Complex Event. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds) Computer Vision Systems. ICVS 2011. Lecture Notes in Computer Science, vol 6962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23968-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23968-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23967-0

  • Online ISBN: 978-3-642-23968-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics