Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interdisciplinary Contributions to Flame Modeling

  • Conference paper
AI*IA 2011: Artificial Intelligence Around Man and Beyond (AI*IA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6934))

Included in the following conference series:

  • 1002 Accesses

Abstract

The world-wide emerging e-society generates new ways to communicate among people with different cultures and backgrounds. Communication systems as forums, blogs, and comments are widely used being easily accessible to end users. Studying and interpreting user generated data/text available on the Internet is a complex and time consuming duty for any human analyst. This study proposes an interdisciplinary approach to modeling the flaming phenomenon (hot, aggressive discussions) in on-line Italian forums. The model is based on the analysis of psycho/cognitive/linguistic interaction modalities among participants to web communities and on state-of-the art machine learning techniques and natural language processing technology. This research gives the opportunity to better understand and model the dynamics of web forums, including the language involved, the interaction between users, the relation between topic and users, language intensity and differences in behavior by age and gender.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreevskaia, A., Bergler, S.: CLaC and CLaC-NB: knowledge-based and corpus-based approaches to sentiment tagging. In: 4th International Workshop on Semantic Evaluations, pp. 117–120 (2007)

    Google Scholar 

  2. Baccianella, S., Esuli, A., Sebastiani, F.: SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In: LREC 2010 (2010)

    Google Scholar 

  3. Basili, R.: Review of Learning to Classify Text Using Support Vector Machines by Thorsten Joachims. Computational Linguistics 29, 655–661 (2003)

    Article  Google Scholar 

  4. Basili, R., Moschitti, A.: Automatic Text Categorization: From Information Retrieval to Support Vector Learning. Aracne Editrice, Informatica (2005)

    Google Scholar 

  5. Bucci, W., Maskit, B.: A weighted dictionary for Referential Activity. Computing Attitude and Affect in Text (2005)

    Google Scholar 

  6. Cassell, J., Badler, N., Steedman, M., Achorn, B., Becket, T., Prevost, S., Stone, M.: Animated conversation: rule-based generation of facial expression, gesture & spoken intonation for multiple conversational agents. In: SIGGRAPH 1994, pp. 413–420 (1994)

    Google Scholar 

  7. Cohen, J.: Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin 70, 213–220 (1968)

    Article  Google Scholar 

  8. Colby, K.: Artificial paranoia. Artificial Intelligence 2(1) (1971)

    Google Scholar 

  9. Coulthard, M.: Author identification, idiolect, and linguistic uniqueness: Forensic linguistics, pp. 431–447. Oxford University Press, Oxford (2004)

    Google Scholar 

  10. Culpeper, J.: Impoliteness: Using Language to Cause Offence. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  11. Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: Opinion extraction and semantic classification of product reviews (2003)

    Google Scholar 

  12. Gobron, S., Ahn, J., Paltoglou, G., Thelwall, M., Thalmann, D.: From sentence to emotion: a real-time three-dimensional graphics metaphor of emotions extracted from text. The Visual Computer: IJCG 26, 505–519 (2010)

    Article  Google Scholar 

  13. Gupta, N., Gilbert, M., Di Fabbrizio, G.: Emotion Detection in Email Customer Care. In: ACL 2010, pp. 10–16 (2010)

    Google Scholar 

  14. Gwet, K.: Handbook of Inter-Rater Reliability. STATAXIS Pub. Company (2010)

    Google Scholar 

  15. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  16. Liu, B.: Sentiment Analysis and Subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing (2010)

    Google Scholar 

  17. Mabry, E.A.: Framing Flames: The Structure of Argumentative Messages on the Net. Computer-Mediated Communication 2 (1997)

    Google Scholar 

  18. McMenamin, G.R., Choi, D.: Forensic Linguistics: Advances in Forensic Stylistics. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  19. Mehrabian, A.: Silent Messages. Wadsworth Publishing Company, Belmont (1971)

    Google Scholar 

  20. Paltoglou, G., Gobron, S., Skowron, M., Thelwall, M., Thalmann, D.: Sentiment analysis of informal textual communication in cyberspace. In: Engage 2010 (2010)

    Google Scholar 

  21. Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. In: ACL 2004, pp. 271–278 (2004)

    Google Scholar 

  22. Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis, pp. 1–135 (2008)

    Google Scholar 

  23. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: ACL 2002, pp. 79–86 (2002)

    Google Scholar 

  24. Pazienza, M.T., Lungu, I., Tudorache, A.G.: Flames Recognition for Opinion Mining. ECECSR Journal 3 (to be published, 2011)

    Google Scholar 

  25. Pazienza, M.T., Stellato, A., Tudorache, A.G.: Flame, risky discussions, no flames recognition in forums. In: EMOT 2008, Marrakesh, Morocco (2008)

    Google Scholar 

  26. Peck, M.S.: The Different Drum: Community Making and Peace. Simon & Shuster, New York (1987)

    Google Scholar 

  27. Pelachaud, C.: Studies on gesture expressivity for a virtual agent. Speech Communication Special Issue, 630–639 (2009)

    Google Scholar 

  28. Porter, M.F.: Snowball: A language for stemming algorithms (2001)

    Google Scholar 

  29. Riloff, E., Wiebe, J.: Learning Extraction Patterns for Subjective Expressions. In: EMNLP 2003 (2003)

    Google Scholar 

  30. Shi, L., Sun, B., Kong, L., Zhang, Y.: Web Forum Sentiment Analysis Based on Topics. In: Ninth IEEE CIT 2009. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  31. Spertus, E.: Smokey: Automatic Recognition of Hostile Messages. In: IAAI 1997, pp. 1058–1065 (1997)

    Google Scholar 

  32. Suler, J.: The basic psychological features of cyberspace (2002), http://www-usr.rider.edu/~suler/psycyber/psycyber.html

  33. Turney, P.D.: Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews. In: ACL 2002, pp. 417–424 (2002)

    Google Scholar 

  34. Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/weka/

  35. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  36. The Word & Web Vector Tool, http://nemoz.org/joomla/content/view/43/83/

  37. Xu, Z., Zhu, S.: Filtering Offensive Language in Online Communities using Grammatical Relations. In: CEAS 2010 (2010)

    Google Scholar 

  38. Yu, H., Hatzivassiloglou, V.: Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: EMNLP 2003, pp. 129–136 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pazienza, M.T., Tudorache, A.G. (2011). Interdisciplinary Contributions to Flame Modeling. In: Pirrone, R., Sorbello, F. (eds) AI*IA 2011: Artificial Intelligence Around Man and Beyond. AI*IA 2011. Lecture Notes in Computer Science(), vol 6934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23954-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23954-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23953-3

  • Online ISBN: 978-3-642-23954-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics