Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6922))

Included in the following conference series:

  • 2427 Accesses

Abstract

Swarm intelligence (SI) is based on collective behavior of self-organized systems. Typical swarm intelligence schemes include Particle Swarm Optimization (PSO), Ant Colony System (ACS), Stochastic Diffusion Search (SDS), Bacteria Foraging (BF), the Artificial Bee Colony (ABC), and so on. Besides the applications to conventional optimization problems, SI can be used in controlling robots and unmanned vehicles, predicting social behaviors, enhancing the telecommunication and computer networks, etc. Indeed, the use of swarm optimization can be applied to a variety of fields in engineering and social sciences. In this paper, we review some popular algorithms in the field of swarm intelligence for problems of optimization. The overview and experiments of PSO, ACS, and ABC are given. Enhanced versions of these are also introduced. In addition, some comparisons are made between these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  2. Bonabeau, E.: Swarm Intelligence. In: O’Reilly Emerging Technology Conference (2003)

    Google Scholar 

  3. Eberhart, R., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proceedings of the Sixth International Symposium on Micro machine Human Science, pp. 39–43. IEEE Press, New York (1995)

    Chapter  Google Scholar 

  4. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of 1995 IEEE International Conf. on Neural Networks, pp. 1942–1948. IEEE Press, New York (1995)

    Google Scholar 

  5. Hu, J., Wang, Z., Qiao, S., Gan, J.C.: The Fitness Evaluation Strategy in Particle Swarm Optimization. Applied Mathematics and Computation 217, 8655–8670 (2011)

    Article  MATH  Google Scholar 

  6. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies. In: Varela, F., Bourgine, P. (eds.) First Eur. Conference Artificial Life, pp. 134–142 (1991)

    Google Scholar 

  7. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-—Part B: Cybernetics 26, 29–41 (1996)

    Article  Google Scholar 

  8. Dorigo, J.M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1, 53–66 (1997)

    Article  Google Scholar 

  9. Chu, S.C., Roddick, J.F., Pan, J.S.: Ant Colony System with Communication Strategies. Information Sciences 167, 63–76 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, Erciyes University, Computer Engineering Department (2005)

    Google Scholar 

  11. Passino, K.M.: Biomimicry of Bacterial Foraging for Distributed Optimization and Control. IEEE Control Systems Magazine 22, 52–67 (2002)

    Article  Google Scholar 

  12. Chu, S.C., Tsai, P.W., Pan, J.S.: Cat Swarm Optimization. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 854–858. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Chu, S.C., Tsai, P.W.: Computational Intelligence Based on the Behavior of Cats. International Journal of Innovative Computing, Information and Control 3, 163–173 (2007)

    Google Scholar 

  14. Bishop, J.M.: Stochastic Searching Networks. In: Proc. 1st IEE Conf. on Artificial Neural Networks, London, pp. 329–331 (1989)

    Google Scholar 

  15. Chang, J.F., Chu, S.C., Roddick, J.F., Pan, J.S.: A Parallel Particle Swarm Optimization Algorithm with Communication Strategies. Journal of Information Science and Engineering 21, 809–818 (2005)

    Google Scholar 

  16. Tsai, P.W., Luo, R., Pan, S.T., Pan, J.S., Liao, B.Y.: Artificial Bee Colony with Forward-communication Strategy. ICIC Express Letters 4, 1–6 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chu, SC., Huang, HC., Roddick, J.F., Pan, JS. (2011). Overview of Algorithms for Swarm Intelligence. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2011. Lecture Notes in Computer Science(), vol 6922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23935-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23935-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23934-2

  • Online ISBN: 978-3-642-23935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics