Abstract
For multi-dimensional function optimization problems, classical differential evolution (DE) algorithm may deteriorate its intensification ability because different dimensions may interfere with each other. To deal with this intrinsic shortage, this paper presents a DE algorithm framework with fine evaluation strategy. In the process of search, solution is updated and evaluated dimension by dimension. In each dimension, the updated value will be accepted only if it can improve the solution. In case that there is no improvement found in any dimension, the new solution, which is calculated using classical mutation operator only, will be accepted in low probability. This strategy can improve diversification and keep DE algorithm from premature convergence. Simulation experiments were carried on typical benchmark functions, and the results show that fine evaluation strategy can improve the performance of DE algorithm remarkably.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (2028), doi:10.1023/A:1008202821328
Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artificial Intelligence Review 33, 61–106 (2010), doi:10.1007/s10462-009-9137-2
Ali1, M., Pant1, M., Abraham, A.: Simplex Differential Evolution. Acta Polytechnica Hungarica 6(5), 95–115 (2009)
Fan, H.Y., Lampinen, J.: A trigonometric mutation operation to differential evolution. Journal of Global Optimization 27, 105–129 (2003), doi:10.1023/A:1024653025686
Hu, S., Huang, H., Czarkowski, D.: Hybrid trigonometric differential evolution for optimizing harmonic distribution. In: IEEE International Symposium on Circuits and Systems, vol. 2, pp. 1306–1309 (May 2005), doi:10.1109/ISCAS.2005.1464835
Angira, R., Santosha, A.: Optimization of dynamic systems: a trigonometric differential evolution approach. Computer & Chemical Engneering 31, 1055–1063 (2007), doi:10.1016/j.compchemeng.2006.09.015
Angira, R., Santosh, A.: A modified trigonometric differential evolution algorithm for optimization of dynamic systems. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1463–1468 (June 2008), doi:10.1109/CEC.2008.4630986
Noman, N., Iba, H.: Enhancing differential evolution performance with local search for high dimensional function optimization. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 967–974 (June 2005), doi:10.1145/1068009.1068174
Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Transaction on Evolutionary Computation 12, 107–125 (2008), doi:10.1109/TEVC.2007.895272
Brest, J., Maǔcec, M.S.: Population size reduction for the differential evolution algorithm. Appllied Intelligence 29, 228–247 (2008), doi:10.1007/s10489-007-0091-x
Brest, J., Zamuda, A., Boškovíc, B., Maucec, M.S., Žumer, V.: High-dimensional real-parameter optimization using self-adaptive differential evolution algorithm with population size reduction. In: IEEE World Congress on Computational Intelligence, pp. 2032–2039 (June 2008), doi:10.1109/CEC.2008.4631067
Neri, F., Tirrone, V.: Scale factor local search in differential evolution. Memetic Computing 1, 153–171 (2009), doi:10.1007/s12293-009-0008-9
Tirronen, V., Neri, F., Rossi, T.: Enhancing differential evolution frameworks by scale factor local search—part I. In: IEEE Congress on Evolutionary Computation, pp. 94–101 (May 2009), doi:10.1109/CEC.2009.4982935
Neri, F., Tirronen, V., Kärkkäinen, T.: Enhancing differential evolution frameworks by scale factor local search—part II. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 118–125 (May 2009), doi:10.1109/CEC.2009.4982938
Brest, J., Žumer, V., Maucec, M.: Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: IEEE Congress on Evolutionary Computation, pp. 215–222 (December 2006), doi:10.1109/CEC.2006.1688311
Brest, J., Greiner, S., Boškovíc, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006), doi:10.1109/TEVC.2006.872133.
Zamuda, A., Brest, J., Boškovíc, B., Žumer, V.: Differential evolution for multiobjective optimization with self adaptation. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 3617–3624 (September 2007), doi:10.1109/CEC.2007.4424941
Brest, J., Zamuda, A., Žumer, V.: An analysis of the control parameters’adaptation in DE. In: Chakraborty, U.K. (ed.) Advances In Differential Evolution, vol. 143, pp. 89–110 (July 2008), doi:10.1007/978-3-540-68830-3_3
Rahnamayan, S., Tizhoosh, H., Salama, M.M.A.: Opposition-based differential evolution for optimization of noisy problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1865–1872 (September 2006), doi:10.1109/CEC.2006.1688534
Rahnamayan, S., Tizhoosh, H., Salama, M.M.A.: Quasi-oppositional differential evolution. In: Proceedings of the IEEE Congress On Evolutionary Computation, pp. 2229–2236 (September 2007), doi:10.1109/CEC.2007.4424748
Rahnamayan, S., Tizhoosh, H., Salama, M.M.A.: Opposition-based differential evolution. In: IEEE Transaction on Evolutinary Computation, vol. 12, pp. 64–79 (February 12, 2008), doi:10.1109/TEVC.2007.894200
Chakraborty, U.K., Das, S., Konar, A.: Differential evolution with local neighborhood. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2042–2049 (September 2006), doi:10.1109/CEC.2006.1688558
Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution with a neighborhood-based mutation operator. IEEE Transaction on Evolutionay Computation 13, 526–553 (2009), doi:10.1109/TEVC.2008.2009457
Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791 (September 2005), doi:10.1109/CEC.2005.1554904
Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: Proceedings of 6th International Mendel Conference on Soft Computing, pp. 76–83 (June 2000), doi: 10.1.1.35.7932
Zielinski, K., Wang, X., Laur, R.: Comparison of adaptive approaches for differential evolution. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 641–650. Springer, Heidelberg (2008), doi:10.1007/978-3-540-87700-4-64
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, X., Wang, L., Zhong, Y., Zhang, H. (2011). Differential Evolution Algorithm with Fine Evaluation Strategy for Multi-dimensional Function Optimization Problems. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23881-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-23881-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23880-2
Online ISBN: 978-3-642-23881-9
eBook Packages: Computer ScienceComputer Science (R0)