Nothing Special   »   [go: up one dir, main page]

Skip to main content

Study of Image Segmentation for MR Diffusion Weighed Image Based on Active Contour

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7003))

  • 2183 Accesses

Abstract

MR Diffusion Weighed Image(DWI) is one of many functional magnetic resonance imaging(fMRI) techniques, and could provide complicated spatial and structural information about the tissue. Aiming at segmentation MR diffusion weighed image for real-time application with numerical stability constraints and high efficiency, a method based on the minimization algorithm is developed. Our approach is based on the image segmentation tasks into a global minimization method. The minimization algorithm minimization the energy, avoid the drawback in the level set approach and easy to implement, allows us a fast minimization of the active contour. Experimental results show that the effectiveness for image segmentation with our method is preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Warach, S., Chien, D., Li, W., Ronthal, M., et al.: Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42(9), 1717–1723 (1992)

    Article  Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision, 321–331 (1987)

    Google Scholar 

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  4. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal Curvature Flows: From Phase Transitions to Active Vision. Archive for Rational Mechanics and Analysis 134, 275–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T., Esedo¯glu, S., Nikolova, M.: Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models, UCLA CAM Report 04-54 (2004)

    Google Scholar 

  6. Chan, F.T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Li, C.M., Xu, C.Y., Changfen, G.: Level Set Evolution without Re-initialization: a New Varitional Formulation. In: Computer Vision and Pattern Recognition, pp. 430–436. IEEE, New York

    Google Scholar 

  8. Vese, L.A., Chan, F.T.: Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 2002 50, 271–293 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, G., Xu, D., Hu, H., Wang, T., Chen, R. (2011). Study of Image Segmentation for MR Diffusion Weighed Image Based on Active Contour. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23887-1_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23886-4

  • Online ISBN: 978-3-642-23887-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics