Abstract
MR Diffusion Weighed Image(DWI) is one of many functional magnetic resonance imaging(fMRI) techniques, and could provide complicated spatial and structural information about the tissue. Aiming at segmentation MR diffusion weighed image for real-time application with numerical stability constraints and high efficiency, a method based on the minimization algorithm is developed. Our approach is based on the image segmentation tasks into a global minimization method. The minimization algorithm minimization the energy, avoid the drawback in the level set approach and easy to implement, allows us a fast minimization of the active contour. Experimental results show that the effectiveness for image segmentation with our method is preferable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Warach, S., Chien, D., Li, W., Ronthal, M., et al.: Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42(9), 1717–1723 (1992)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision, 321–331 (1987)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. International Journal of Computer Vision 22(1), 61–79 (1997)
Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal Curvature Flows: From Phase Transitions to Active Vision. Archive for Rational Mechanics and Analysis 134, 275–301 (1996)
Chan, T., Esedo¯glu, S., Nikolova, M.: Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models, UCLA CAM Report 04-54 (2004)
Chan, F.T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)
Li, C.M., Xu, C.Y., Changfen, G.: Level Set Evolution without Re-initialization: a New Varitional Formulation. In: Computer Vision and Pattern Recognition, pp. 430–436. IEEE, New York
Vese, L.A., Chan, F.T.: Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 2002 50, 271–293 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, G., Xu, D., Hu, H., Wang, T., Chen, R. (2011). Study of Image Segmentation for MR Diffusion Weighed Image Based on Active Contour. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-23887-1_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23886-4
Online ISBN: 978-3-642-23887-1
eBook Packages: Computer ScienceComputer Science (R0)