Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Principled Approach to the Analysis of Process Mining Algorithms

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2011 (IDEAL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6936))

Abstract

Process mining uses event logs to learn and reason about business process models. Existing algorithms for mining the control-flow of processes in general do not take into account the probabilistic nature of the underlying process, which affects the behaviour of algorithms and the amount of data needed for confidence in mining. We contribute a first step towards a novel probabilistic framework within which to talk about approaches to process mining, and apply it to the well-known Alpha Algorithm. We show that knowledge of model structures and algorithm behaviour can be used to predict the number of traces needed for mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ferreira, D.R., Gillblad, D.: Discovering Process Models from Unlabelled Event Logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Herbst, J., Karagiannis, D.: Integrating Machine Learning and Workflow Management to Support Acquisition and Adaption of Workflow Models. Int. J. Intell. Syst. Account. Financ. Manage. 9(2), 67–92 (2000)

    Article  Google Scholar 

  4. Kailath, T.: Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. Communication Technology CM-15(1), 52–60 (1967)

    Article  Google Scholar 

  5. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)

    Article  Google Scholar 

  6. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace Clustering in Process Mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Tiwari, A., Turner, C.J., Majeed, B.: A Review of Business Process Mining: State-of-the-Art and Future Trends. Bus. Process Manage. J. 14(1), 5–22 (2008)

    Article  Google Scholar 

  8. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  9. Vidal, E., Thollard, F., de la Higuera, F., Casacuberta, F., Carrasco, R.C.: Probabilistic Finite-State Machines - Part I. IEEE Trans. Pattern Anal. 27(7), 1013–1025 (2005)

    Article  Google Scholar 

  10. Weijters, T., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process Mining with the Heuristics Miner Algorithm. BETA Working Paper Series, vol. 166. Eindhoven University of Technology, Edinhoven (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, P., Bordbar, B., Tiňo, P. (2011). A Principled Approach to the Analysis of Process Mining Algorithms. In: Yin, H., Wang, W., Rayward-Smith, V. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2011. IDEAL 2011. Lecture Notes in Computer Science, vol 6936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23878-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23878-9_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23877-2

  • Online ISBN: 978-3-642-23878-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics