Abstract
We consider a chirally invariant lattice Higgs-Yukawa model based on the Neuberger overlap operator . The model will be evaluated using PHMC-simulations and we will present final results on the upper and lower Higgs boson mass bounds. The question of a fourth generation of heavy quarks has recently gained attention and we will illustrate the effect of heavy quarks on the Higgs boson mass bounds. Finally we report on the unstable nature of the Higgs boson. The resonance mass and width have been computed in a genuinely non-perturbative manner. The results are compared to the former Higgs boson mass bounds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Smit. Standard model and chiral gauge theories on the lattice. Nucl. Phys. Proc. Suppl., 17:3–16, 1990.
J. Shigemitsu. Higgs-Yukawa chiral models. Nucl. Phys. Proc. Suppl., 20:515–527, 1991.
M. F. L. Golterman. Lattice chiral gauge theories: Results and problems. Nucl. Phys. Proc. Suppl., 20:528–541, 1991.
I. Montvay and G. Münster. Quantum Fields on a Lattice (Cambridge Monographs on Mathematical Physics). Cambridge University Press, 1997.
A. K. De and J. Jersák. Yukawa models on the lattice. HLRZ Jülich, HLRZ 91-83, preprint edition, 1991.
M. F. L. Golterman, D. N. Petcher, and E. Rivas. On the Eichten-Preskill proposal for lattice chiral gauge theories. Nucl. Phys. Proc. Suppl. B, 29C:193–199, 1992.
K. Jansen. Domain wall fermions and chiral gauge theories. Phys. Rept., 273:1–54, 1996.
M. Lüscher. Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation. Phys. Lett. B, 428:342–345, 1998.
P. H. Ginsparg and K. G. Wilson. A remnant of chiral symmetry on the lattice. Phys. Rev. D, 25:2649, 1982.
T. Bhattacharya, M. R. Martin, and E. Poppitz. Chiral lattice gauge theories from warped domain walls and Ginsparg-Wilson fermions. Phys. Rev. D, 74:085028, 2006.
J. Giedt and E. Poppitz. Chiral lattice gauge theories and the strong coupling dynamics of a Yukawa-Higgs model with Ginsparg-Wilson fermions. JHEP, 10:076, 2007.
E. Poppitz and Y. Shang. Lattice chirality and the decoupling of mirror fermions. arXiv:0706.1043 [hep-th], 2007.
Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder. New Higgs physics from the lattice. PoS, LAT2007:056, 2007.
P. Gerhold and K. Jansen. The phase structure of a chirally invariant lattice Higgs-Yukawa model for small and for large values of the Yukawa coupling constant. arXiv:0705.2539 [hep-lat], 2007.
P. Gerhold. Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model. 2010.
P. Gerhold and K. Jansen. Lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions. JHEP, 0907:025, 2009.
P. Gerhold and K. Jansen. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model. JHEP, 1004:094, 2010.
B. Holdom et al. Four statements about the fourth generation. PMC Phys. A, 3:4, 2009.
P. Q. Hung. Minimal SU(5) resuscitated by long-lived quarks and leptons. Phys. Rev. Lett., 80:3000–3003, 1998.
M. Luscher. Signatures of unstable particles in finite volume. Nucl. Phys. B, 364:237–254, 1991.
M. Luscher. Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B, 354:531–578, 1991.
H. Neuberger. More about exactly massless quarks on the lattice. Phys. Lett. B, 427:353–355, 1998.
R. Frezzotti and K. Jansen. The PHMC algorithm for simulations of dynamical fermions. I: Description and properties. Nucl. Phys. B, 555:395–431, 1999.
U. Wolff. Monte Carlo errors with less errors. Comput. Phys. Commun., 156:143–153, 2004.
M. Lüscher and P Weisz. Scaling laws and triviality bounds in the lattice phi**4 theory. 3. N component model. Nucl. Phys. B, 318:705, 1989.
M. Luscher. Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states. Commun. Math. Phys., 104:177, 1986.
M. Luscher. Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states. Commun. Math. Phys., 105:153–188, 1986.
M. Gockeler, H. A. Kastrup, J. Westphalen, and F. Zimmermann. Scattering phases on finite lattices in the broken phase of the four-dimensional O(4) phi**4 theory. Nucl. Phys. B, 425:413–448, 1994.
M. Luscher and U. Wolff. How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation. Nucl. Phys. B, 339:222–252, 1990.
B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, and R. Sommer. On the generalized eigenvalue method for energies and matrix elements in lattice field theory. JHEP, 0904:094, 2009.
K. Rummukainen and S. A. Gottlieb. Resonance scattering phase shifts on a nonrest frame lattice. Nucl. Phys. B, 450:397–436, 1995.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerhold, P., Jansen, K., Kallarackal, J. (2012). Higgs Boson Mass Bounds from a Chirally Invariant Lattice Higgs-Yukawa Model. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-23869-7_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23868-0
Online ISBN: 978-3-642-23869-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)