Nothing Special   »   [go: up one dir, main page]

Skip to main content

Higgs Boson Mass Bounds from a Chirally Invariant Lattice Higgs-Yukawa Model

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

We consider a chirally invariant lattice Higgs-Yukawa model based on the Neuberger overlap operator . The model will be evaluated using PHMC-simulations and we will present final results on the upper and lower Higgs boson mass bounds. The question of a fourth generation of heavy quarks has recently gained attention and we will illustrate the effect of heavy quarks on the Higgs boson mass bounds. Finally we report on the unstable nature of the Higgs boson. The resonance mass and width have been computed in a genuinely non-perturbative manner. The results are compared to the former Higgs boson mass bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Smit. Standard model and chiral gauge theories on the lattice. Nucl. Phys. Proc. Suppl., 17:3–16, 1990.

    Article  Google Scholar 

  2. J. Shigemitsu. Higgs-Yukawa chiral models. Nucl. Phys. Proc. Suppl., 20:515–527, 1991.

    Article  Google Scholar 

  3. M. F. L. Golterman. Lattice chiral gauge theories: Results and problems. Nucl. Phys. Proc. Suppl., 20:528–541, 1991.

    Article  Google Scholar 

  4. I. Montvay and G. Münster. Quantum Fields on a Lattice (Cambridge Monographs on Mathematical Physics). Cambridge University Press, 1997.

    Google Scholar 

  5. A. K. De and J. Jersák. Yukawa models on the lattice. HLRZ Jülich, HLRZ 91-83, preprint edition, 1991.

    Google Scholar 

  6. M. F. L. Golterman, D. N. Petcher, and E. Rivas. On the Eichten-Preskill proposal for lattice chiral gauge theories. Nucl. Phys. Proc. Suppl. B, 29C:193–199, 1992.

    Article  Google Scholar 

  7. K. Jansen. Domain wall fermions and chiral gauge theories. Phys. Rept., 273:1–54, 1996.

    Article  MathSciNet  Google Scholar 

  8. M. Lüscher. Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation. Phys. Lett. B, 428:342–345, 1998.

    Article  Google Scholar 

  9. P. H. Ginsparg and K. G. Wilson. A remnant of chiral symmetry on the lattice. Phys. Rev. D, 25:2649, 1982.

    Article  Google Scholar 

  10. T. Bhattacharya, M. R. Martin, and E. Poppitz. Chiral lattice gauge theories from warped domain walls and Ginsparg-Wilson fermions. Phys. Rev. D, 74:085028, 2006.

    Article  Google Scholar 

  11. J. Giedt and E. Poppitz. Chiral lattice gauge theories and the strong coupling dynamics of a Yukawa-Higgs model with Ginsparg-Wilson fermions. JHEP, 10:076, 2007.

    Article  Google Scholar 

  12. E. Poppitz and Y. Shang. Lattice chirality and the decoupling of mirror fermions. arXiv:0706.1043 [hep-th], 2007.

  13. Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder. New Higgs physics from the lattice. PoS, LAT2007:056, 2007.

    Google Scholar 

  14. P. Gerhold and K. Jansen. The phase structure of a chirally invariant lattice Higgs-Yukawa model for small and for large values of the Yukawa coupling constant. arXiv:0705.2539 [hep-lat], 2007.

  15. P. Gerhold. Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model. 2010.

    Google Scholar 

  16. P. Gerhold and K. Jansen. Lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions. JHEP, 0907:025, 2009.

    Article  Google Scholar 

  17. P. Gerhold and K. Jansen. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model. JHEP, 1004:094, 2010.

    Article  Google Scholar 

  18. B. Holdom et al. Four statements about the fourth generation. PMC Phys. A, 3:4, 2009.

    Article  Google Scholar 

  19. P. Q. Hung. Minimal SU(5) resuscitated by long-lived quarks and leptons. Phys. Rev. Lett., 80:3000–3003, 1998.

    Article  Google Scholar 

  20. M. Luscher. Signatures of unstable particles in finite volume. Nucl. Phys. B, 364:237–254, 1991.

    Article  MathSciNet  Google Scholar 

  21. M. Luscher. Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B, 354:531–578, 1991.

    Article  MathSciNet  Google Scholar 

  22. H. Neuberger. More about exactly massless quarks on the lattice. Phys. Lett. B, 427:353–355, 1998.

    Article  Google Scholar 

  23. R. Frezzotti and K. Jansen. The PHMC algorithm for simulations of dynamical fermions. I: Description and properties. Nucl. Phys. B, 555:395–431, 1999.

    Article  Google Scholar 

  24. U. Wolff. Monte Carlo errors with less errors. Comput. Phys. Commun., 156:143–153, 2004.

    Article  MATH  Google Scholar 

  25. M. Lüscher and P Weisz. Scaling laws and triviality bounds in the lattice phi**4 theory. 3. N component model. Nucl. Phys. B, 318:705, 1989.

    Article  Google Scholar 

  26. M. Luscher. Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states. Commun. Math. Phys., 104:177, 1986.

    Article  MathSciNet  Google Scholar 

  27. M. Luscher. Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states. Commun. Math. Phys., 105:153–188, 1986.

    Article  MathSciNet  Google Scholar 

  28. M. Gockeler, H. A. Kastrup, J. Westphalen, and F. Zimmermann. Scattering phases on finite lattices in the broken phase of the four-dimensional O(4) phi**4 theory. Nucl. Phys. B, 425:413–448, 1994.

    Article  Google Scholar 

  29. M. Luscher and U. Wolff. How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation. Nucl. Phys. B, 339:222–252, 1990.

    Article  MathSciNet  Google Scholar 

  30. B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, and R. Sommer. On the generalized eigenvalue method for energies and matrix elements in lattice field theory. JHEP, 0904:094, 2009.

    Google Scholar 

  31. K. Rummukainen and S. A. Gottlieb. Resonance scattering phase shifts on a nonrest frame lattice. Nucl. Phys. B, 450:397–436, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Gerhold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerhold, P., Jansen, K., Kallarackal, J. (2012). Higgs Boson Mass Bounds from a Chirally Invariant Lattice Higgs-Yukawa Model. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_6

Download citation

Publish with us

Policies and ethics