Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Scene Classification Based on Context of Features for a Mobile Robot

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2011)

Abstract

This paper presents an unsupervised scene classification method based on the context of features for semantic recognition of indoor scenes used for an autonomous mobile robot. Our method creates Visual Words (VWs) of two types using Scale-Invariant Feature Transform (SIFT) and Gist. Using the combination of VWs, our method creates Bags of VWs (BoVWs) to vote for a two-dimensional histogram as context-based features. Moreover, our method generates labels as a candidate of categories while maintaining stability and plasticity together using the incremental learning function of Adaptive Resonance Theory-2 (ART-2). Our method actualizes unsupervised-learning-based scene classification using generated labels of ART-2 as teaching signals of Counter Propagation Networks (CPNs). The spatial and topological relations among scenes are mapped on the category map of CPNs. The relations of classified scenes that include categories are visualized on the category map. The experiment demonstrates the classification accuracy of semantic categories such as office rooms and corridors using an open dataset as an evaluation platform of position estimation and navigation for an autonomous mobile robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: An experimental and theoretical investigation into simultaneous localization and map building (SLAM). In: Experimental Robotics VI. LNCIS. Springer, Heidelberg (2000)

    Google Scholar 

  2. Wu, J., Rehg, J.M.: CENTRIST: A Visual Descriptor for Scene Categorization. IEEE Trans. Pattern Analysis and Machine Intelligence (2010)

    Google Scholar 

  3. Wu, J., Christensen, H.I., Rehg, J.M.: Visual Place Categorization: Problem, Dataset, and Algorithm. In: Proc. IEEE/RSJ Int’l. Conf. Intelligent Robots and Systems (2009)

    Google Scholar 

  4. Siagain, C., Itti, L.: Rapid Biologically Inspired Scene Classification Using Features Shared with Visual Attention. IEEE Trans. Pattern Analysis and Machine Intelligence 29(2), 300–312 (2007)

    Article  Google Scholar 

  5. Quattoni, A., Torralba, A.: Recognizing Indoor Scenes. In: Proc. Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  6. Tsukada, M., Utsumi, Y., Madokoro, H., Sato, K.: Unsupervised Feature Selection and Category Classification for a Vision-Based Mobile Robot. IEICE Trans. Inf. & Sys. E94-D(1), 127–136 (2011)

    Article  Google Scholar 

  7. Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features in recognition. In: Visual Perception, Progress in Brain Research, vol. 155 (2006)

    Google Scholar 

  8. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-Based Vision System for Place and Object Recognition. In: Proc. IEEE Int’l. Conf. Computer Vision, pp. 1023–1029 (October 2003)

    Google Scholar 

  9. Yanai, K.: The Current State and Future Directions on Generic Object Recognition. IPSJ SIG Notes CVIM, 121–134 (September 2006)

    Google Scholar 

  10. Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Proc. IEEE International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  11. Torralba, A.: How many pixels make an image? Visual Neuroscience 26, 123–131 (2009)

    Article  Google Scholar 

  12. Takeuchi, T.: Underlying Mechanisms of Scene Recognition and Visual Search. ITE Technical Report 33(24), 7–14 (2009)

    Google Scholar 

  13. Nagahashi, T., Ihara, A., Fujiyoshi, H.: Tendency of Image Local Features that are Effective for Discrimination by using Bag-of-Features in Object Category Recognition. IPSJ SIG Notes DVIM (3), 13–20 (2009)

    Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences (1995)

    Google Scholar 

  15. Carpenter, G.A., Grossberg, S.: ART 2: Stable Self-Organization of Pattern Recognition Codes for Analog Input Patterns. Applied Optics 26, 4919–4930 (1987)

    Article  Google Scholar 

  16. Hetch-Nielsen, R.: Counterpropagation networks. In: Proc. of IEEE First Int’l. Conf. on Neural Networks (1987)

    Google Scholar 

  17. Luo, J., Pronobis, A., Caputo, B., Jensfelt, P.: The KTHIDOL2 database. Technical Report CVAP304, Kungliga Tekniska Hoegskolan, CVAP/CAS (October 2006)

    Google Scholar 

  18. Pronobis, A., Xing, L., Caputo, B.: Overview of the CLEF 2009 Robot Vision Track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 110–119. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madokoro, H., Utsumi, Y., Sato, K. (2011). Unsupervised Scene Classification Based on Context of Features for a Mobile Robot. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2011. Lecture Notes in Computer Science(), vol 6881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23851-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23851-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23850-5

  • Online ISBN: 978-3-642-23851-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics