Nothing Special   »   [go: up one dir, main page]

Skip to main content

Higher-Order Linear Differential Systems with Truncated Coefficients

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6885))

Included in the following conference series:

Abstract

We consider the following problem: given a linear differential system with formal Laurent series coefficients, we want to decide whether the system has non-zero Laurent series solutions, and find all such solutions if they exist. Let us also assume we need only a given positive integer number l of initial terms of these series solutions. How many initial terms of the coefficients of the original system should we use to construct what we need?

Supposing that the series coefficients of the original systems are represented algorithmically, we show that these questions are undecidable in general. However, they are decidable in the scalar case and in the case when we know in advance that a given system has an invertible leading matrix. We use our results in order to improve some functionality of the Maple [17] package ISOLDE [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramov, S., Bronstein, M., Khmelnov, D.: On regular and logarithmic solutions of ordinary linear differential systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 1–12. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Barkatou, M.A.: A rational version of Moser’s Algorithm. In: ISSAC 1995 Proceedings, pp. 297–302. ACM Press, New York (1995)

    Google Scholar 

  3. Barkatou, M.A.: On rational solutions of systems of linear differential equations. J. Symbolic Computation 28, 547–567 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barkatou, M.A., Cluzeau, T., El Bacha, C.: Algorithms for regular solutions of higher-order linear differential systems. In: Johnson, J.R., Park, H., Kaltofen, E. (eds.) ISSAC 2009 Proceedings, pp. 7–14. ACM Press, New York (2009)

    Google Scholar 

  5. Barkatou, M.A., Cluzeau, T., El Bacha, C.: Simple forms of higher-order linear differential systems and their applications to computing regular solutions. J. Symbolic Computation 46, 633–658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barkatou, M.A., El Bacha, C., Pflügel, E.: Simultaneously row- and column-reduced higher-order linear differential systems. In: Koepf, W. (ed.) ISSAC 2010 Proceedings, pp. 45–52. ACM Press, New York (2010)

    Google Scholar 

  7. Barkatou, M.A., Pflügel, E.: An algorithm computing the regular formal solutions of a system of linear differential equations. J. Symbolic Computation 28, 569–588 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barkatou, M.A., Pflügel, E.: On the equivalence problem of linear differential systems and its application for factoring completely reducible systems. In: Gloor, O. (ed.) ISSAC 1998 Proceedings, pp. 268–275. ACM Press, New York (1998)

    Google Scholar 

  9. Barkatou, M.A., Pflügel, E.: Computing super-irreducible forms of systems of linear differential equations via Moser-reduction: A new approach. In: Dongming, W. (ed.) ISSAC 2007 Proceedings, pp. 1–8. ACM Press, New York (2007)

    Google Scholar 

  10. Barkatou, M.A., Pflügel, E.: On the Moser- and super-reduction algorithms of systems of linear differential equations and their complexity. J. Symbolic Computation 44, 1017–1036 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barkatou, M.A., Pflügel, E.: The ISOLDE package. A SourceForge Open Source project (2006), http://isolde.sourceforge.net

  12. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  13. Hilali, A., Wazner, A.: Formes super–irréductibles des systèmes différentiels linéaires. Numer. Math. 50, 429–449 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for singular differential equations. Linear Algebra and Its Applications 72, 1–46 (1985)

    Google Scholar 

  15. Pflügel, E.: Effective formal reduction of linear differential systems. Applicable Algebra in Engineering, Communication and Computation 10, 153–187 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2 42, 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  17. Maple online help: http://www.maplesoft.com/support/help/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abramov, S.A., Barkatou, M.A., Pflügel, E. (2011). Higher-Order Linear Differential Systems with Truncated Coefficients. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2011. Lecture Notes in Computer Science, vol 6885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23568-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23568-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23567-2

  • Online ISBN: 978-3-642-23568-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics