Nothing Special   »   [go: up one dir, main page]

Skip to main content

Expansion Finding for Given Acronyms Using Conditional Random Fields

  • Conference paper
Web-Age Information Management (WAIM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6897))

Included in the following conference series:

Abstract

There are increasingly amount of acronyms in many kinds of documents and web pages, which is a serious obstacle for the readers. This paper addresses the task of finding expansions in texts for given acronym queries. We formulate the expansion finding problem as a sequence labeling task and use Conditional Random Fields to solve it. Since it is a complex task, our method tries to enhance the performance from two aspects. First,we introduce nonlinear hidden layers to learn better representations of the input data under the framework of Conditional Random Fields. Second, simple and effective features are designed. The experimental results on real data show that our model achieves the best performance against the state-of-the-art baselines including Support Vector Machine and standard Conditional Random Fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Taghva, K., Gilbreth, J.: Recognizing acronyms and their definitions. IJDAR 1(4), 191–198 (1999)

    Article  Google Scholar 

  2. Yeates, S.: Automatic extraction of acronyms from text. In: New Zealand Computer Science Research Students’ Conference, pp. 117–124 (1999)

    Google Scholar 

  3. Larkey, L.S., Ogilvie, P., Price, M.A., Tamilio, B.: Acrophile: An automated acronym extractor and server. In: Proceedings of the ACM Fifth International Conference on Digital Libraries, DL 2000, Dallas TX, pp. 205–214. ACM Press, New York (2000)

    Google Scholar 

  4. Roche, M., Prince, V.: Managing the acronym/expansion identification process for text-mining applications. Int. J. Software and Informatics, 163–179 (2008)

    Google Scholar 

  5. Lafferty, J., Mccallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)

    Google Scholar 

  6. Tasker, B., Pieter, A., Koller, D.: Discriminative probabilistic models for relational data. In: Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2002), pp. 485–492. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  7. Peng, F., Mccallum, A.: Information extraction from research papers using conditional random fields. Information Processing & Management 42(4), 963–979 (2006)

    Article  Google Scholar 

  8. Settles, B.: Abner: an open source tool for automatically tagging genes, proteins, and other entity names in text. Bioinformatics (April 2005)

    Google Scholar 

  9. Sha, F., Pereira, F.: Shallow parsing with conditional random fields (2003)

    Google Scholar 

  10. Sato, K., Sakakibara, Y.: RNA secondary structural alignment with conditional random fields. Bioinformatics 21(suppl. 2), ii237–ii242 (2005)

    Google Scholar 

  11. Liu, Y., Carbonell, J., Weigele, P., Gopalakrishnan, V.: Segmentation conditional random fields (scrfs): A new approach for protein fold recognition. In: Proc. of the 9th Ann. Intl. Conf. on Comput. Biol (RECOMB), pp. 14–18. ACM Press, New York (2005)

    Google Scholar 

  12. He, X., Zemel, R.S., Carreira-Perpinan, M.A.: Multiscale conditional random fields for image labeling, vol. 2, II-695–II-702 (2004)

    Google Scholar 

  13. Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images (2003)

    Google Scholar 

  14. Lafferty, J., Zhu, X., Liu, Y.: Kernel conditional random fields: representation and clique selection. In: ICML (2004)

    Google Scholar 

  15. Liu, J., Yu, K., Zhang, Y., Huang, Y.: Training conditional random fields using transfer learning for gesture recognition. In: ICDM 2010: Proceedings of the 10th International Conference on Data Ming, Sydney, Australia (2010)

    Google Scholar 

  16. Peng, J., Bo, L., Xu, J.: Conditional neural fields. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1419–1427 (2009)

    Google Scholar 

  17. Vapnik, V.N.: The Nature of Statistical Learning Theory (Information Science and Statistics). Springer, Heidelberg (November 1999)

    Google Scholar 

  18. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  19. Ramshaw, L., Marcus, M.: Text chunking using Transformation-Based learning. In: Yarovsky, D., Church, K. (eds.) Proceedings of the Third Workshop on Very Large Corpora, Somerset, New Jersey, pp. 82–94. Association for Computational Linguistics (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Chen, J., Liu, T., Huang, Y. (2011). Expansion Finding for Given Acronyms Using Conditional Random Fields. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds) Web-Age Information Management. WAIM 2011. Lecture Notes in Computer Science, vol 6897. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23535-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23535-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23534-4

  • Online ISBN: 978-3-642-23535-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics