Nothing Special   »   [go: up one dir, main page]

Skip to main content

Term Similarity and Weighting Framework for Text Representation

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6880))

Included in the following conference series:

Abstract

Expressiveness of natural language is a challenge for text representation since the same idea can be expressed in many different ways. Therefore, terms in a document should not be treated independently of one another since together they help to disambiguate and establish meaning. Term-similarity measures are often used to improve representation by capturing semantic relationships between terms. Another consideration for representation involves the importance of terms. Feature selection techniques address this by using statistical measures to quantify term usefulness for retrieval. In this paper we present a framework that combines term-similarity and weighting for text representation. This allows us to comparatively study the impact of term similarity, term weighting and any synergistic effect that may exist between them. Study of term similarity is based on approaches that exploit term co-occurrences within document and sentence contexts whilst term weighting uses the popular Chi-squared test. Our results on text classification tasks show that the combined effect of similarity and weighting is superior to each technique independently and that this synergistic effect is obtained regardless of co-occurrence context granularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between words using web search engines. In: WWW 2007: Proceedings of the 16th International Conference on World Wide Web, pp. 757–766. ACM, New York (2007)

    Google Scholar 

  2. Boyd-graber, J., Fellbaum, C., Osherson, D., Schapire, R.: Adding dense, weighted connections to wordnet. In: Proceedings of the Third International WordNet Conference (2006)

    Google Scholar 

  3. Brank, J., Milic-Frayling, N.: A framework for characterzing feature weighting and selection methods in text classification. Tech. rep., Microsoft Research (January 2005)

    Google Scholar 

  4. Chakraborti, S., Lothian, R., Wiratunga, N., Orecchioni, A., Watt, S.: Fast case retrieval nets for textual data. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 400–414. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chakraborti, S., Wiratunga, N., Lothian, R., Watt, S.: Acquiring word similarities with higher order association mining. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 61–76. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Cilibrasi, R.L., Vitanyi, P.M.B.: The google similarity distance. IEEE Trans. on Knowl. and Data Eng. 19, 370–383 (2007)

    Article  Google Scholar 

  7. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  8. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for natural language processing. J. Artif. Int. Res. 34, 443–498 (2009)

    MATH  Google Scholar 

  9. Gracia, J., Mena, E.: Web-based measure of semantic relatedness. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 136–150. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc. of the Int’l. Conf. on Research in Computational Linguistics, pp. 19–33 (1997)

    Google Scholar 

  11. Kontostathis, A., Pottenger, W.M.: A framework for understanding latent semantic indexing (lsi) performance. Information Processing and Management 42(1), 56–73 (2006)

    Article  Google Scholar 

  12. Lin, D.: An information-theoretic definition of similarity. In: Proc. of the 15th Int’l. Conf. on Machine Learning, pp. 296–304 (1998)

    Google Scholar 

  13. Miller, G.A.: Wordnet: A lexical database for english. Communications of the ACM 38, 39–41 (1995)

    Article  Google Scholar 

  14. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 1, pp. 448–453 (1995)

    Google Scholar 

  15. Sahlgren, M.: An introduction to random indexing. In: Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering, TKE 2005 (2005)

    Google Scholar 

  16. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18, 613–620 (1975)

    Article  MATH  Google Scholar 

  17. Schütze, H., Pedersen, J.O.: A cooccurrence-based thesaurus and two applications to information retrieval. Inf. Process. Manage. 33, 307–318 (1997)

    Article  Google Scholar 

  18. Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Int. Res. 37, 141–188 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Wiratunga, N., Koychev, I., Massie, S.: Feature selection and generalisation for retrieval of textual cases. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 806–820. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proc. of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138 (1994)

    Google Scholar 

  21. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning, ICML 1997, pp. 412–420 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashwin Ram Nirmalie Wiratunga

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sani, S., Wiratunga, N., Massie, S., Lothian, R. (2011). Term Similarity and Weighting Framework for Text Representation. In: Ram, A., Wiratunga, N. (eds) Case-Based Reasoning Research and Development. ICCBR 2011. Lecture Notes in Computer Science(), vol 6880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23291-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23291-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23290-9

  • Online ISBN: 978-3-642-23291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics