Nothing Special   »   [go: up one dir, main page]

Skip to main content

Axiomatizing Weak Ready Simulation Semantics over BCCSP

  • Conference paper
Theoretical Aspects of Computing – ICTAC 2011 (ICTAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6916))

Included in the following conference series:

Abstract

Ready simulation has proven to be one of the most significant semantics in process theory. It is at the heart of a number of general results that pave the way to a comprehensive understanding of the spectrum of process semantics. Since its original definition by Bloom, Istrail and Meyer in 1995, several authors have proposed generalizations of ready simulation to deal with internal actions. However, a thorough study of the (non-)existence of finite (in)equational bases for weak ready simulation semantics is still missing in the literature. This paper presents a complete account of positive and negative results on the axiomatizability of weak ready simulation semantics over the language BCCSP. In addition, this study offers a thorough analysis of the axiomatizability properties of weak simulation semantics.

Luca Aceto and Anna Ingolfsdottir have been partially supported by the projects ‘New Developments in Operational Semantics’ (nr. 080039021) and ‘Meta-theory of Algebraic Process Theories’ (nr. 100014021) of the Icelandic Research Fund. David de Frutos Escrig and Carlos Gregorio-Rodríguez have been partially supported by the Spanish projects TESIS (TIN2009-14312-C02-01), DESAFIOS10 (TIN2009-14599-C03-01) and PROMETIDOS S2009/TIC-1465. The paper was begun when David de Frutos Escrig and Carlos Gregorio-Rodríguez held Abel Extraordinary Chair positions at Reykjavik University, and finalized while Luca Aceto and Anna Ingolfsdottir held Abel Extraordinary Chairs at Universidad Complutense de Madrid, Spain, supported by the NILS Mobility Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Information and Compututation 111(1), 1–52 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aceto, L., de Frutos Escrig, D., Gregorio-Rodríguez, C., Ingólfsdóttir, A.: Complete and ready simulation semantics are not finitely based over BCCSP, even with a singleton alphabet. Information Processing Letters 111(9), 408–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aceto, L., Fokkink, W.J., Ingólfsdóttir, A.: Ready to preorder: Get your BCCSP axiomatization for free! In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 65–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Aceto, L., Fokkink, W.J., Ingólfsdóttir, A., Luttik, B.: Finite equational bases in process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: A finite equational base for CCS with left merge and communication merge. ACM Trans. Comput. Log. 10(1) (2009)

    Google Scholar 

  6. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Mousavi, M.R.: Lifting non-finite axiomatizability results to extensions of process algebras. Acta Informatica 47(3), 147–177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aceto, L., Hennessy, M.: Termination, deadlock and divergence. Journal of the ACM 39(1), 147–187 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aceto, L., Ingolfsdottir, A., Luttik, B., van Tilburg, P.: Finite equational bases for fragments of CCS with restriction and relabelling. In: 5th IFIP International Conference on Theoretical Computer Science. IFIP, vol. 273, pp. 317–332. Springer, Heidelberg (2008)

    Google Scholar 

  9. Baeten, J., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  10. Baeten, J.C.M., de Vink, E.P.: Axiomatizing GSOS with termination. Journal of Logic and Algebraic Programming 60-61, 323–351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1-3), 109–137 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the ACM 42(1), 232–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, T.: Clocks, Dice and Processes. PhD thesis, Centrum voor Wiskunde en Informatica (CWI), Vrije Universiteit, Amsterdam (2009)

    Google Scholar 

  14. Chen, T., Fokkink, W.: On the axiomatizability of impossible futures: Preorder versus equivalence. In: LICS, pp. 156–165. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  15. Chen, T., Fokkink, W., Luttik, B., Nain, S.: On finite alphabets and infinite bases. Information and Computation 206(5), 492–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, T., Fokkink, W., van Glabbeek, R.J.: Ready to preorder: The case of weak process semantics. Information Processing Letters 109(2), 104–111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of process semantics: Equational semantics. Electronic Notes in Theoretical Computer Science 249, 243–267 (2009)

    Article  MATH  Google Scholar 

  18. de Frutos-Escrig, D., Gregorio-Rodríguez, C.: Universal coinductive characterizations of process semantics. In: 5th IFIP International Conference on Theoretical Computer Science. IFIP, vol. 273, pp. 397–412. Springer, Heidelberg (2008)

    Google Scholar 

  19. de Frutos-Escrig, D., Gregorio-Rodríguez, C.: (Bi)simulations up-to characterise process semantics. Information and Computation 207(2), 146–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: Ready to preorder: an algebraic and general proof. Journal of Logic and Algebraic Programming 78(7), 539–551 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Glabbeek, R.J.: The linear time - branching time spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

    Google Scholar 

  23. van Glabbeek, R.J.: The linear time – branching time spectrum I; the semantics of concrete, sequential processes. In: Handbook of Process Algebra, vol. ch. 1, pp. 3–99. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  24. van Glabbeek, R.J., Weijland, P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), 555–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. van Glabbeek, R.J.: A characterisation of weak bisimulation congruence. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 26–39. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Groote, J.F.: A new strategy for proving omega-completeness applied to process algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 314–331. Springer, Heidelberg (1990)

    Google Scholar 

  27. Hennessy, M.: A term model for synchronous processes. Informationa and Control 51(1), 58–75 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32, 137–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  30. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation, 94(1):1–28 (1991)

    Google Scholar 

  31. Lüttgen, G., Vogler, W.: Ready simulation for concurrency: It’s logical! Information and Computation 208(7), 845–867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Milner, R.: An algebraic definition of simulation between programs. In: Proceedings 2nd Joint Conference on Artificial Intelligence, pp. 481–489. BCS (1971); Also available as Report No. CS-205, Computer Science Department, Stanford University

    Google Scholar 

  33. Milner, R.: A modal characterisation of observable machine behaviour. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  34. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  35. Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviors. Information and Computation 81(2), 227–247 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moller, F.: Axioms for Concurrency. PhD thesis, Report CST-59-89, Department of Computer Science, University of Edinburgh (1989)

    Google Scholar 

  37. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ulidowski, I.: Axiomatisations of weak equivalences for De Simone languages. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 219–233. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  39. Ulidowski, I.: Refusal simulation and interactive games. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 208–222. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  40. Voorhoeve, M., Mauw, S.: Impossible futures and determinism. Information Processing Letters 80(1), 51–58 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Walker, D.: Bisimulation and divergence. Information and Computation 85(2), 202–241 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aceto, L., de Frutos Escrig, D., Gregorio-Rodríguez, C., Ingolfsdottir, A. (2011). Axiomatizing Weak Ready Simulation Semantics over BCCSP. In: Cerone, A., Pihlajasaari, P. (eds) Theoretical Aspects of Computing – ICTAC 2011. ICTAC 2011. Lecture Notes in Computer Science, vol 6916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23283-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23283-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23282-4

  • Online ISBN: 978-3-642-23283-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics