Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Machine Learning and Data Mining Framework to Enable Evolutionary Improvement in Trauma Triage

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6871))

  • 2118 Accesses

Abstract

Trauma triage seeks to match injured patients with appropriate healthcare resources. Mistriage can be costly both in terms of money and lives. This paper proposes and evaluates a comprehensive model that uses both machine learning and data mining to support the process of trauma triage. The proposed model is more dynamic and adaptive than the typical guideline-based approach, and it incorporates a computer-assisted feedback loop to support clinician efforts to improve triage accuracy. This paper uses three years of retrospective data to compare multiple machine learning algorithms to the current standard triage decision guidelines. Then, the triage classifications from one of those experiments are used as input to demonstrate the potential of our data mining algorithm to provide a mapping between patient type and classifier performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bond, R.J., Kortbeek, J.B., Preshaw, R.M.: Field trauma triage: combining mechanism of injury with the prehospital index for an improved trauma triage tool. J. Trauma 43(2), 283–287 (1997)

    Article  Google Scholar 

  2. Tamim, H., et al.: Field triage of trauma patients: improving on the Prehospital Index. Am. J. Emerg. Med. 20(3), 170–176 (2002)

    Article  Google Scholar 

  3. Resources for Optimal Care of the Injured Patient. American College of Surgeons, Chicago (2006)

    Google Scholar 

  4. Liberman, M., et al.: The association between trauma system and trauma center components and outcome in a mature regionalized trauma system. Surgery 137(6), 647–658 (2005)

    Article  Google Scholar 

  5. Utter, G.H., et al.: Inclusive trauma systems: do they improve triage or outcomes of the severely injured? J. Trauma. 60(3), 529–535 (2006)

    Article  Google Scholar 

  6. Demetriades, D., et al.: The effect of trauma center designation and trauma volume on outcome in specific severe injuries. Ann. Surg. 242(4), 512–517 (2005)

    Google Scholar 

  7. Demetriades, D., et al.: Relationship between American College of Surgeons trauma center designation and mortality in patients with severe trauma (injury severity score > 15). J. Am. Coll. Surg. 202(2), 212–215 (2006)

    Article  Google Scholar 

  8. Densmore, J.C., et al.: Outcomes and delivery of care in pediatric injury. J. Pediatr. Surg. 41(1), 92–98 (2004)

    Article  Google Scholar 

  9. Champion, H.R., et al.: Trauma score. Crit Care Med. 9(9), 672–676 (1981)

    Article  Google Scholar 

  10. Moreau, M., et al.: Application of the trauma score in the prehospital setting. Ann. Emerg. Med. 14(11), 1049–1054 (1985)

    Article  Google Scholar 

  11. Champion, H.R., et al.: A revision of the Trauma Score. J. Trauma. 29(5), 623–629 (1989)

    Article  Google Scholar 

  12. Clemmer, T.P., et al.: Prospective evaluation of the CRAMS scale for triaging major trauma. J. Trauma. 25(3), 188–191 (1985)

    Article  Google Scholar 

  13. Gormican, S.P.: CRAMS scale: field triage of trauma victims. Ann. Emerg. Med. 11(3), 132–135 (1982)

    Article  Google Scholar 

  14. Baxt, W.G., Jones, G., Fortlage, D.: The trauma triage rule: a new, resource-based approach to the prehospital identification of major trauma victims. Ann. Emerg. Med. 19(12), 1401–1406 (1990)

    Article  Google Scholar 

  15. Rhee, K.J., Fisher Jr., C.J., Willitis, N.H.: The Rapid Acute Physiology Score. Am. J. Emerg. Med. 5(4), 278–282 (1987)

    Article  Google Scholar 

  16. Al-Salamah, M.A., et al.: Initial emergency department trauma scores from the OPALS study: the case for the motor score in blunt trauma. Acad. Emerg. Med. 11(8), 834–842 (2004)

    Article  Google Scholar 

  17. Scheetz, L.J.: Effectiveness of prehospital trauma triage guidelines for the identification of major trauma in elderly motor vehicle crash victims. J. Emerg. Nurs. 29(2), 109–115 (2003)

    Article  Google Scholar 

  18. Baez, A.A., Lane, P.L., Sorondo, B.: System compliance with out-of-hospital trauma triage criteria. J. Trauma. 54(2), 344–351 (2003)

    Article  Google Scholar 

  19. Hannan, E.L., et al.: Physiologic trauma triage criteria in adult trauma patients: are they effective in saving lives by transporting patients to trauma centers? J. Am. Coll. Surg. 200(4), 584–592 (2005)

    Article  Google Scholar 

  20. Santaniello, J.M., et al.: Mechanism of injury does not predict acuity or level of service need: field triage criteria revisited. Surgery 134(4), 698–703 (2003)

    Article  Google Scholar 

  21. Gabbe, B.J., et al.: Prehospital prediction of intensive care unit stay and mortality in blunt trauma patients. J. Trauma. 59(2), 458–465 (2005)

    Article  Google Scholar 

  22. Talbert, D.A., Honeycutt, M., Smith, A., Talbert, S.R.: An adaptive, population-sensitive trauma triage decision support model. In: Proc of the AMIA Annual Symposium (2009)

    Google Scholar 

  23. Honeycutt, M., Talbert, D.A., Talbert, S.R.: Interactive knowledge frontier discovery with COBWEB-KFD. In: Proc. Florida Artificial Intelligence Research Society (FLAIRS) (2010)

    Google Scholar 

  24. Rimel, R.W., Jane, J.A., Edlich, R.F.: An injury severity scale for comprehensive management of central nervous system trauma. JACEP 8(2), 64–67 (1979)

    Article  Google Scholar 

  25. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  26. Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers. HP Labs Tech Report HPL-2003-4 (2003)

    Google Scholar 

  27. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  28. Talbert, S., Talbert, D.: A comparison of a decision tree induction algorithm with the ACS guidelines for trauma triage. In: AMIA Fall Symposium (2007)

    Google Scholar 

  29. http://www.rulequest.com/see5-info.html

  30. http://cran.r-project.org/web/packages/AMORE/AMORE.pdf

  31. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008)

    Google Scholar 

  32. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  33. Statnikov, A., Tsamardinos, I., Dosbayev, Y., Aliferis, C.F.: GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int. J. Med. Inform. Aug. 74(7-8), 491–503 (2005)

    Article  Google Scholar 

  34. Scheffer, T.: Error estimation and model selection. Ph.D. Thesis, Technischen Universitt Berlin, School of Computer Science (1999)

    Google Scholar 

  35. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proc. of the Fourteenth Int. Joint Conf. on AI. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  36. Fisher, D.: Knowledge acquisition via incremental conceptual clustering. Machine Learning 2, 139–172 (1987)

    Google Scholar 

  37. Fisher, D.: Noise-tolerant conceptual clustering. In: Proc. of the Eleventh Int. Joint Conf. on AI. Morgan Kaufmann, San Fransico (1989)

    Google Scholar 

  38. Gluck, M., Corter, J.: Information, uncertainty, and the utility of categories. In: Proc of the Seventh Annual Conference of the Cognitive Science Society (1985)

    Google Scholar 

  39. Fisher, D.: Iterative optimization and simplification of hierarchical clusterings. Journal of Artificial Intelligence Research 4, 147–180 (1996)

    MATH  Google Scholar 

  40. Kavek, B., Lavrac, N., Jovanoski, V.: Apriori-sd: Adapting association rule learning to subgroup discovery. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 230–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  41. Gamberger, D., Lavrac, N., Krstacic, A., Krstacic, G.: Clinical data analysis based on iterative subgroup discovery: experiments in brain ischaemia data analysis. Applied Intelligence 27(3), 205–217 (2007)

    Article  MATH  Google Scholar 

  42. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  43. Breslow, L., Aha, D.: Simplifying decision trees: A survey. Tech report, Naval Research Laboratory (1996)

    Google Scholar 

  44. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman & Hall / CRC (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Talbert, D.A., Honeycutt, M., Talbert, S. (2011). A Machine Learning and Data Mining Framework to Enable Evolutionary Improvement in Trauma Triage. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2011. Lecture Notes in Computer Science(), vol 6871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23199-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23199-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23198-8

  • Online ISBN: 978-3-642-23199-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics