Abstract
In order to guarantee that grasping with robot fingers are safe when interacting with a human or a touched object, the robot fingers have to be compliant. In this study, a novel active and robust compliant control technique is proposed by employing an Integral Sliding Mode Control (ISMC). The ISMC allows us to use a model reference approach for which a virtual mass-spring damper can be introduced to enable compliant control. The performance of the ISMC is validated for the constrained underactuated BERUL (Bristol Elumotion Robot fingers) fingers. The results show that the approach is feasible for compliance interaction with objects of different softness. Moreover, the compliance results show that the ISMC is robust towards nonlinearities and uncertainties in the robot fingers in particular friction and stiction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Herrmann, G., Melhuish, C.: Towards safety in human robot interaction. International Journal of Social Robotics 2, 217–219 (2010)
Yoshikawa, T.: Multifingered robot hands: Control for grasping and manipulation. Annual Reviews in Control 34(2), 199–208 (2010)
Sisbot, E., Marin-Urias, L., Broqure, X., Sidobre, D., Alami, R.: Synthesizing robot motions adapted to human presence. International Journal of Social Robotics 2, 329–343 (2010)
Wang, W., Loh, R.N., Gu, E.Y.: Passive compliance versus active compliance in robot-based automated assembly systems. Industrial Robot: An International Journal 25(1), 48–57 (1998)
Cutkosky, M.R.: Robotic Grasping and Fine Manipulation. Kluwer Academic Publishers, Norwell (1985)
Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)
Johnson, K.L.: Contact Problems in the Classical Theory of Elasticity. Alphen aan den Rijn, The Netherlands, Sijthoff and Noordhoff, Netherland (1980)
Shimoga, K., Goldenberg, A.: Soft robotic fingertips. The International Journal of Robotics Research 15(4), 320–334 (1996)
Biagiotti, L., Melchiorri, C., Tiezzi, P., Vassura, G.: Modelling and identification of soft pads for robotic hands. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 2786–2791 (2005)
Liu, H., Hirzinger, G.: Cartesian impedance control for the dlr hand. In: Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1999 (1999)
Kugi, A., Ott, C., Albu-Schaffer, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Transactions on Robotics 24(2), 416–429 (2008)
Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research 26(1), 23–39 (2007)
Chen, Z., Lii, N., Wimboeck, T., Fan, S., Jin, M., Borst, C., Liu, H.: Experimental study on impedance control for the five-finger dexterous robot hand dlr-hit ii. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5867–5874 (2010)
Okada, M., Nakamura, Y., Hoshino, S.: Design of active/passive hybrid compliance in the frequency domain-shaping dynamic compliance of humanoid shoulder mechanism. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000 (2000)
Montana, D.J.: The Kinematics of Contact and Grasp. The International Journal of Robotics Research 7(3), 17–32 (1988)
Kobayashi, K., Yoshikawa, T.: Controllability of Under-Actuated Planar Manipulators with One Unactuated Joint. The International Journal of Robotics Research 21(5-6), 555–561 (2002)
Jalani, J., Herrmann, G., Melhuish, C.: Robust trajectory following for underactuated robot fingers. In: UKACC International Conference on Control 2010, pp. 495–500 (September 2010)
Canudas De Wit, C., Ge, S.: Adaptive friction compensation for systems with generalized velocity/position friction dependency. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 3, pp. 2465–2470 (December 1997)
Ge, S., Lee, T., Ren, S.: Adaptive friction compensation of servo mechanisms. In: Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 2, pp. 1175–1180 (1999)
Shi, J., Liu, H., Bajcinca, N.: Robust control of robotic manipulators based on integral sliding mode. International Journal of Control 81, 1537–1548 (2008)
Yokoyama, M., Kim, G.-N., Tsuchiya, M.: Integral Sliding Mode Control with Anti-windup Compensation and Its Application to a Power Assist System. Journal of Vibration and Control 16, 503–512 (2010)
Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: Integral sliding mode control for trajectory tracking of a unicycle type mobile robot. Integr. Comput.-Aided Eng. 13(3), 277–288 (2006)
Eker, I., Akinal, S.: Sliding mode control with integral augmented sliding surface: design and experimental application to an electromechanical system. Electrical Engineering (Archiv fur Elektrotechnik) 90(3), 189–197 (2008)
Chang, J.-L.: Dynamic output integral sliding-mode control with disturbance attenuation. IEEE Transactions on Automatic Control 54, 2653–2658 (2009)
Jalani, J., Herrmann, G., Melhuish, C.: Concept for robust compliance control of robot fingers. In: Proceeding of 11th Conference Towards Autonomous Robotic Systems, pp. 97–102 (May 2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jalani, J., Khan, S.G., Herrmann, G., Melhuish, C. (2011). A Novel Approach of Robust Active Compliance for Robot Fingers. In: Li, TH.S., et al. Next Wave in Robotics. FIRA 2011. Communications in Computer and Information Science, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23147-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-23147-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23146-9
Online ISBN: 978-3-642-23147-6
eBook Packages: Computer ScienceComputer Science (R0)