Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Approach of Robust Active Compliance for Robot Fingers

  • Conference paper
Next Wave in Robotics (FIRA 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 212))

Included in the following conference series:

Abstract

In order to guarantee that grasping with robot fingers are safe when interacting with a human or a touched object, the robot fingers have to be compliant. In this study, a novel active and robust compliant control technique is proposed by employing an Integral Sliding Mode Control (ISMC). The ISMC allows us to use a model reference approach for which a virtual mass-spring damper can be introduced to enable compliant control. The performance of the ISMC is validated for the constrained underactuated BERUL (Bristol Elumotion Robot fingers) fingers. The results show that the approach is feasible for compliance interaction with objects of different softness. Moreover, the compliance results show that the ISMC is robust towards nonlinearities and uncertainties in the robot fingers in particular friction and stiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Herrmann, G., Melhuish, C.: Towards safety in human robot interaction. International Journal of Social Robotics 2, 217–219 (2010)

    Article  Google Scholar 

  2. Yoshikawa, T.: Multifingered robot hands: Control for grasping and manipulation. Annual Reviews in Control 34(2), 199–208 (2010)

    Article  Google Scholar 

  3. Sisbot, E., Marin-Urias, L., Broqure, X., Sidobre, D., Alami, R.: Synthesizing robot motions adapted to human presence. International Journal of Social Robotics 2, 329–343 (2010)

    Article  Google Scholar 

  4. Wang, W., Loh, R.N., Gu, E.Y.: Passive compliance versus active compliance in robot-based automated assembly systems. Industrial Robot: An International Journal 25(1), 48–57 (1998)

    Article  Google Scholar 

  5. Cutkosky, M.R.: Robotic Grasping and Fine Manipulation. Kluwer Academic Publishers, Norwell (1985)

    Book  Google Scholar 

  6. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  7. Johnson, K.L.: Contact Problems in the Classical Theory of Elasticity. Alphen aan den Rijn, The Netherlands, Sijthoff and Noordhoff, Netherland (1980)

    Google Scholar 

  8. Shimoga, K., Goldenberg, A.: Soft robotic fingertips. The International Journal of Robotics Research 15(4), 320–334 (1996)

    Article  Google Scholar 

  9. Biagiotti, L., Melchiorri, C., Tiezzi, P., Vassura, G.: Modelling and identification of soft pads for robotic hands. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 2786–2791 (2005)

    Google Scholar 

  10. Liu, H., Hirzinger, G.: Cartesian impedance control for the dlr hand. In: Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1999 (1999)

    Google Scholar 

  11. Kugi, A., Ott, C., Albu-Schaffer, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Transactions on Robotics 24(2), 416–429 (2008)

    Article  Google Scholar 

  12. Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research 26(1), 23–39 (2007)

    Article  MATH  Google Scholar 

  13. Chen, Z., Lii, N., Wimboeck, T., Fan, S., Jin, M., Borst, C., Liu, H.: Experimental study on impedance control for the five-finger dexterous robot hand dlr-hit ii. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5867–5874 (2010)

    Google Scholar 

  14. Okada, M., Nakamura, Y., Hoshino, S.: Design of active/passive hybrid compliance in the frequency domain-shaping dynamic compliance of humanoid shoulder mechanism. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000 (2000)

    Google Scholar 

  15. Montana, D.J.: The Kinematics of Contact and Grasp. The International Journal of Robotics Research 7(3), 17–32 (1988)

    Article  Google Scholar 

  16. Kobayashi, K., Yoshikawa, T.: Controllability of Under-Actuated Planar Manipulators with One Unactuated Joint. The International Journal of Robotics Research 21(5-6), 555–561 (2002)

    Article  Google Scholar 

  17. Jalani, J., Herrmann, G., Melhuish, C.: Robust trajectory following for underactuated robot fingers. In: UKACC International Conference on Control 2010, pp. 495–500 (September 2010)

    Google Scholar 

  18. Canudas De Wit, C., Ge, S.: Adaptive friction compensation for systems with generalized velocity/position friction dependency. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 3, pp. 2465–2470 (December 1997)

    Google Scholar 

  19. Ge, S., Lee, T., Ren, S.: Adaptive friction compensation of servo mechanisms. In: Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 2, pp. 1175–1180 (1999)

    Google Scholar 

  20. Shi, J., Liu, H., Bajcinca, N.: Robust control of robotic manipulators based on integral sliding mode. International Journal of Control 81, 1537–1548 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yokoyama, M., Kim, G.-N., Tsuchiya, M.: Integral Sliding Mode Control with Anti-windup Compensation and Its Application to a Power Assist System. Journal of Vibration and Control 16, 503–512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: Integral sliding mode control for trajectory tracking of a unicycle type mobile robot. Integr. Comput.-Aided Eng. 13(3), 277–288 (2006)

    Google Scholar 

  23. Eker, I., Akinal, S.: Sliding mode control with integral augmented sliding surface: design and experimental application to an electromechanical system. Electrical Engineering (Archiv fur Elektrotechnik) 90(3), 189–197 (2008)

    Article  Google Scholar 

  24. Chang, J.-L.: Dynamic output integral sliding-mode control with disturbance attenuation. IEEE Transactions on Automatic Control 54, 2653–2658 (2009)

    Article  MathSciNet  Google Scholar 

  25. Jalani, J., Herrmann, G., Melhuish, C.: Concept for robust compliance control of robot fingers. In: Proceeding of 11th Conference Towards Autonomous Robotic Systems, pp. 97–102 (May 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jalani, J., Khan, S.G., Herrmann, G., Melhuish, C. (2011). A Novel Approach of Robust Active Compliance for Robot Fingers. In: Li, TH.S., et al. Next Wave in Robotics. FIRA 2011. Communications in Computer and Information Science, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23147-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23147-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23146-9

  • Online ISBN: 978-3-642-23147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics