Nothing Special   »   [go: up one dir, main page]

Skip to main content

Implicit Scene Context for Object Segmentation and Classification

  • Conference paper
Pattern Recognition (DAGM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6835))

Included in the following conference series:

Abstract

In this paper, we propose a generic integration of context-knowledge within the unary potentials of Conditional Random Fields (CRF) for object segmentation and classification. Our aim is to learn object-context from the background class of partially labeled images which we call implicit scene context (ISC). A CRF is set up on image super-pixels that are clustered into multiple classes. We then derive context histograms capturing neighborhood relations and integrate them as features into the CRF. Classification experiments with simulated data, eTRIMS building facades, Graz-02 cars, and samples downloaded from GoogleTM show significant performance improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)

    Article  Google Scholar 

  2. Crowther, P.S., Cox, R.J.: A Method for Optimal Division of Data Sets for Use in Neural Networks. In: R.K., et al. (ed.). LNCS, pp. 1–7. Springer, Heidelberg (2005)

    Google Scholar 

  3. Galleguillos, C., McFee, B., Belongie, S., Lanckriet, G.: Multi-Class Object Localization by Combining Local Contextual Interactions. In: CVPR (2010)

    Google Scholar 

  4. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-Class Segmentation with Relative Location Prior. International Journal of Computer Vision 80(3), 300–316 (2008)

    Article  Google Scholar 

  5. He, X., Zemel, R.S., Carreira-Perpiñán, M.: Multiscale Conditional Random Fields for Image Labeling. In: CVPR (2004)

    Google Scholar 

  6. Heitz, G., Koller, D.: Learning spatial context: Using stuff to find things. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 30–43. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Kohli, P., Ladicky, L., Torr, P.H.: Robust Higher Order Potentials for Enforcing Label Consistency. International Journal of Computer Vision 82(3), 302–324 (2009)

    Article  Google Scholar 

  8. Korč, F., Förstner, W.: eTRIMS Image Database for interpreting images of man-made scenes. Tech. Rep. TR-IGG-P-2009-01 (April 2009)

    Google Scholar 

  9. Kumar, S., Hebert, M.: Discriminative Random Fields. International Journal of Computer Vision 68(2), 179–201 (2006)

    Article  Google Scholar 

  10. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.: Associative Hierarchical CRFs for Object Class Image Segmentation. In: ICCV (2009)

    Google Scholar 

  11. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for segmenting and labeling sequence data. In: ICML (2001)

    Google Scholar 

  12. Murphy, K.P., Torralba, A., Freeman, W.T.: Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (2004)

    Google Scholar 

  13. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic Object Recognition with Boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 416–431 (2006)

    Article  Google Scholar 

  14. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects in Context. In: ICCV (2007)

    Google Scholar 

  15. Savarese, S., Winn, J., Criminisi, A.: Discriminative Object Class Models of Appearance and Shape by Correlatons. In: CVPR (2006)

    Google Scholar 

  16. Schmidt, M.: UGM: A Matlab toolbox for probabilistic undirected graphical models, http://www.cs.ubc.ca/~schmidtm/Software/UGM.html (accessed July 15, 2010)

  17. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Torralba, A., Murphy, K.P., Freeman, W.T.: Contextual Models for Object Detection Using Boosted Random Fields. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, pp. 1401–1408. MIT Press, Cambridge (2005)

    Google Scholar 

  19. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wegner, J.D., Rosenhahn, B., Soergel, U. (2011). Implicit Scene Context for Object Segmentation and Classification. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23123-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23122-3

  • Online ISBN: 978-3-642-23123-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics