Abstract
In this paper, we propose a generic integration of context-knowledge within the unary potentials of Conditional Random Fields (CRF) for object segmentation and classification. Our aim is to learn object-context from the background class of partially labeled images which we call implicit scene context (ISC). A CRF is set up on image super-pixels that are clustered into multiple classes. We then derive context histograms capturing neighborhood relations and integrate them as features into the CRF. Classification experiments with simulated data, eTRIMS building facades, Graz-02 cars, and samples downloaded from GoogleTM show significant performance improvements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)
Crowther, P.S., Cox, R.J.: A Method for Optimal Division of Data Sets for Use in Neural Networks. In: R.K., et al. (ed.). LNCS, pp. 1–7. Springer, Heidelberg (2005)
Galleguillos, C., McFee, B., Belongie, S., Lanckriet, G.: Multi-Class Object Localization by Combining Local Contextual Interactions. In: CVPR (2010)
Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-Class Segmentation with Relative Location Prior. International Journal of Computer Vision 80(3), 300–316 (2008)
He, X., Zemel, R.S., Carreira-Perpiñán, M.: Multiscale Conditional Random Fields for Image Labeling. In: CVPR (2004)
Heitz, G., Koller, D.: Learning spatial context: Using stuff to find things. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 30–43. Springer, Heidelberg (2008)
Kohli, P., Ladicky, L., Torr, P.H.: Robust Higher Order Potentials for Enforcing Label Consistency. International Journal of Computer Vision 82(3), 302–324 (2009)
Korč, F., Förstner, W.: eTRIMS Image Database for interpreting images of man-made scenes. Tech. Rep. TR-IGG-P-2009-01 (April 2009)
Kumar, S., Hebert, M.: Discriminative Random Fields. International Journal of Computer Vision 68(2), 179–201 (2006)
Ladicky, L., Russell, C., Kohli, P., Torr, P.H.: Associative Hierarchical CRFs for Object Class Image Segmentation. In: ICCV (2009)
Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for segmenting and labeling sequence data. In: ICML (2001)
Murphy, K.P., Torralba, A., Freeman, W.T.: Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (2004)
Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic Object Recognition with Boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 416–431 (2006)
Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects in Context. In: ICCV (2007)
Savarese, S., Winn, J., Criminisi, A.: Discriminative Object Class Models of Appearance and Shape by Correlatons. In: CVPR (2006)
Schmidt, M.: UGM: A Matlab toolbox for probabilistic undirected graphical models, http://www.cs.ubc.ca/~schmidtm/Software/UGM.html (accessed July 15, 2010)
Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)
Torralba, A., Murphy, K.P., Freeman, W.T.: Contextual Models for Object Detection Using Boosted Random Fields. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, pp. 1401–1408. MIT Press, Cambridge (2005)
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wegner, J.D., Rosenhahn, B., Soergel, U. (2011). Implicit Scene Context for Object Segmentation and Classification. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-23123-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23122-3
Online ISBN: 978-3-642-23123-0
eBook Packages: Computer ScienceComputer Science (R0)