Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recommendation by Example in Social Annotation Systems

  • Conference paper
E-Commerce and Web Technologies (EC-Web 2011)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 85))

Included in the following conference series:

Abstract

Recommendation by example is common in contemporary Internet applications providing resources similar to a user-selected example. In this paper this task is considered as a function available within a social annotation system offering new ways to model both users and resources. Using three real-world datasets we motivate several conclusions. First, a personalized approach outperforms non-personalized approaches suggesting that users perceive the similarity between resources differently. Second, the manner in which users interact with social annotation systems vary producing datasets with variable characteristics and requiring different recommendation strategies to best satisfy their needs. Third, a hybrid recommender constructed from several component recommenders can produce superior results by exploiting multiple dimensions of the data. The hybrid remains powerful, flexible and extensible despite the underlying characteristics of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets of Items in Large Databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C, pp. 207–216 (1993)

    Google Scholar 

  2. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  3. Basu, C., Hirsh, H., Cohen, W.W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: AAAI/IAAI, pp. 714–720 (1998)

    Google Scholar 

  4. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)

    Article  Google Scholar 

  5. Deshpande, M., Karypis, G.: Item-Based Top-N Recommendation Algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)

    Article  Google Scholar 

  6. Gemmell, J., Ramezani, M., Schimoler, T., Christiansen, L., Mobasher, B.: A fast effective multi-channeled tag recommender. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Discovery Challenge, Bled, Slovenia (2009)

    Google Scholar 

  7. Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Hybrid tag recommendation for social annotation systems. In: 19th ACM International Conference on Information and Knowledge Management, Toronto, Canada (2010)

    Google Scholar 

  8. Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Resource Recommendation in Collaborative Tagging Applications. In: E-Commerce and Web Technologies, Bilbao, Spain (2010)

    Google Scholar 

  9. Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Tag-based resource recommendation in social annotation applications. In: User Modeling, Adaptation and Personalization, Girona, Spain (2011)

    Google Scholar 

  10. Gemmell, J., Schimoler, T., Ramezani, M., Christiansen, L., Mobasher, B.: Resource Recommendation for Social Tagging: A Multi-Channel Hybrid Approach. In: Recommender Systems & the Social Web, Barcelona, Spain (2010)

    Google Scholar 

  11. Gemmell, J., Shepitsen, A., Mobasher, B., Burke, R.: Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering. In: 10th International Conference on Data Warehousing and Knowledge Discovery, Turin, Italy (2008)

    Google Scholar 

  12. Guan, Z., Wang, C., Bu, J., Chen, C., Yang, K., Cai, D., He, X.: Document recommendation in social tagging services. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 391–400. ACM, New York (2010)

    Google Scholar 

  13. Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel, E.: Social media recommendation based on people and tags. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 194–201. ACM, New York (2010)

    Google Scholar 

  14. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–513. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40(3), 87 (1997)

    Article  Google Scholar 

  16. Lewis, D.D., Schapire, R.E., Callan, J.P., Papka, R.: Training algorithms for linear text classifiers. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1996, pp. 298–306. ACM, New York (1996)

    Chapter  Google Scholar 

  17. Liang, H., Xu, Y., Li, Y., Nayak, R., Tao, X.: Connecting users and items with weighted tags for personalized item recommendations. In: Proceedings of the 21st ACM conference on Hypertext and Hypermedia, HT 2010, pp. 51–60. ACM, New York (2010)

    Google Scholar 

  18. Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Gerd, S.: Evaluating similarity measures for emergent semantics of social tagging. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 641–650. ACM, New York (2009)

    Google Scholar 

  19. Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semantics: Science, Services and Agents on the World Wide Web 5(1), 5–15 (2007)

    Article  Google Scholar 

  20. Pennock, D.M., Lawrence, S., Popescul, R., Ungar, L.H.: Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 437–444 (2001)

    Google Scholar 

  21. Plangprasopchok, A., Lerman, K.: Exploiting Social Annotation for Automatic Resource Discovery. In: Proceedings of AAAI Workshop on Information Integration (April 2007)

    Google Scholar 

  22. Rendle, S., Schmidt-Thieme, L.: Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, New York (2010)

    Google Scholar 

  23. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback, vol. 41, pp. 288–297. Wiley, San Francisco (1990)

    Google Scholar 

  24. Salton, G., Wong, A., Yang, C.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18(11), 613–620 (1975)

    Article  Google Scholar 

  25. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: 10th International Conference on World Wide Web, Hong Kong, China (2001)

    Google Scholar 

  26. Schafer, J.B., Konstan, J.A., Riedl, J.: E-Commerce Recommendation Applications. Data mining and knowledge discovery 5(1), 115–153 (2001)

    Article  Google Scholar 

  27. Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags. In: WWW 2009: Proceedings of the 18th International Conference on World Wide Web, pp. 671–680. ACM, New York (2009)

    Google Scholar 

  28. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word of Mouth”. In: SIGCHI Conference on Human Factors in Computing Systems, Denver, Colorado (1995)

    Google Scholar 

  29. Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized Recommendation in Social Tagging Systems using Hierarchical Clustering. In: ACM Conference on Recommender Systems, Lausanne, Switzerland (2008)

    Google Scholar 

  30. Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proceedings of the 15th International Conference on World Wide Web, Edinburgh, Scotland (2006)

    Google Scholar 

  31. Yang, Y., Chute, C.G.: An example-based mapping method for text categorization and retrieval. ACM Trans. Inf. Syst. 12, 252–277 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gemmell, J., Schimoler, T., Mobasher, B., Burke, R. (2011). Recommendation by Example in Social Annotation Systems. In: Huemer, C., Setzer, T. (eds) E-Commerce and Web Technologies. EC-Web 2011. Lecture Notes in Business Information Processing, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23014-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23014-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23013-4

  • Online ISBN: 978-3-642-23014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics