Abstract
Recommendation by example is common in contemporary Internet applications providing resources similar to a user-selected example. In this paper this task is considered as a function available within a social annotation system offering new ways to model both users and resources. Using three real-world datasets we motivate several conclusions. First, a personalized approach outperforms non-personalized approaches suggesting that users perceive the similarity between resources differently. Second, the manner in which users interact with social annotation systems vary producing datasets with variable characteristics and requiring different recommendation strategies to best satisfy their needs. Third, a hybrid recommender constructed from several component recommenders can produce superior results by exploiting multiple dimensions of the data. The hybrid remains powerful, flexible and extensible despite the underlying characteristics of the data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets of Items in Large Databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C, pp. 207–216 (1993)
Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)
Basu, C., Hirsh, H., Cohen, W.W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: AAAI/IAAI, pp. 714–720 (1998)
Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)
Deshpande, M., Karypis, G.: Item-Based Top-N Recommendation Algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)
Gemmell, J., Ramezani, M., Schimoler, T., Christiansen, L., Mobasher, B.: A fast effective multi-channeled tag recommender. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Discovery Challenge, Bled, Slovenia (2009)
Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Hybrid tag recommendation for social annotation systems. In: 19th ACM International Conference on Information and Knowledge Management, Toronto, Canada (2010)
Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Resource Recommendation in Collaborative Tagging Applications. In: E-Commerce and Web Technologies, Bilbao, Spain (2010)
Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Tag-based resource recommendation in social annotation applications. In: User Modeling, Adaptation and Personalization, Girona, Spain (2011)
Gemmell, J., Schimoler, T., Ramezani, M., Christiansen, L., Mobasher, B.: Resource Recommendation for Social Tagging: A Multi-Channel Hybrid Approach. In: Recommender Systems & the Social Web, Barcelona, Spain (2010)
Gemmell, J., Shepitsen, A., Mobasher, B., Burke, R.: Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering. In: 10th International Conference on Data Warehousing and Knowledge Discovery, Turin, Italy (2008)
Guan, Z., Wang, C., Bu, J., Chen, C., Yang, K., Cai, D., He, X.: Document recommendation in social tagging services. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 391–400. ACM, New York (2010)
Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel, E.: Social media recommendation based on people and tags. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 194–201. ACM, New York (2010)
Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–513. Springer, Heidelberg (2007)
Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40(3), 87 (1997)
Lewis, D.D., Schapire, R.E., Callan, J.P., Papka, R.: Training algorithms for linear text classifiers. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1996, pp. 298–306. ACM, New York (1996)
Liang, H., Xu, Y., Li, Y., Nayak, R., Tao, X.: Connecting users and items with weighted tags for personalized item recommendations. In: Proceedings of the 21st ACM conference on Hypertext and Hypermedia, HT 2010, pp. 51–60. ACM, New York (2010)
Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Gerd, S.: Evaluating similarity measures for emergent semantics of social tagging. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 641–650. ACM, New York (2009)
Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semantics: Science, Services and Agents on the World Wide Web 5(1), 5–15 (2007)
Pennock, D.M., Lawrence, S., Popescul, R., Ungar, L.H.: Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 437–444 (2001)
Plangprasopchok, A., Lerman, K.: Exploiting Social Annotation for Automatic Resource Discovery. In: Proceedings of AAAI Workshop on Information Integration (April 2007)
Rendle, S., Schmidt-Thieme, L.: Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, New York (2010)
Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback, vol. 41, pp. 288–297. Wiley, San Francisco (1990)
Salton, G., Wong, A., Yang, C.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18(11), 613–620 (1975)
Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: 10th International Conference on World Wide Web, Hong Kong, China (2001)
Schafer, J.B., Konstan, J.A., Riedl, J.: E-Commerce Recommendation Applications. Data mining and knowledge discovery 5(1), 115–153 (2001)
Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags. In: WWW 2009: Proceedings of the 18th International Conference on World Wide Web, pp. 671–680. ACM, New York (2009)
Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word of Mouth”. In: SIGCHI Conference on Human Factors in Computing Systems, Denver, Colorado (1995)
Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized Recommendation in Social Tagging Systems using Hierarchical Clustering. In: ACM Conference on Recommender Systems, Lausanne, Switzerland (2008)
Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proceedings of the 15th International Conference on World Wide Web, Edinburgh, Scotland (2006)
Yang, Y., Chute, C.G.: An example-based mapping method for text categorization and retrieval. ACM Trans. Inf. Syst. 12, 252–277 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gemmell, J., Schimoler, T., Mobasher, B., Burke, R. (2011). Recommendation by Example in Social Annotation Systems. In: Huemer, C., Setzer, T. (eds) E-Commerce and Web Technologies. EC-Web 2011. Lecture Notes in Business Information Processing, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23014-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-23014-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23013-4
Online ISBN: 978-3-642-23014-1
eBook Packages: Computer ScienceComputer Science (R0)