Nothing Special   »   [go: up one dir, main page]

Skip to main content

Symmetric Functions Capture General Functions

(Extended Abstract)

  • Conference paper
Mathematical Foundations of Computer Science 2011 (MFCS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6907))

  • 896 Accesses

Abstract

We show that the set of all functions is equivalent to the set of all symmetric functions (possibly over a larger domain) up to deterministic time complexity. In particular, for any function f, there is an equivalent symmetric function f sym such that f can be computed from f sym and vice-versa (modulo an extra deterministic linear time computation). For f over finite fields, f sym is (necessarily) over an extension field. This reduction is optimal in size of the extension field. For polynomial functions, the degree of f sym is not optimal. We present another reduction that has optimal degree “blowup” but is worse in the other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. J. Assn. Comp. Mach. 45, 501–555 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. Assn. Comp. Mach. 45, 70–122 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combinatorica 23(3), 365–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Assumus Jr., E.F., Key, J.D.: Polynomial codes and Finite Geometries in Handbook of Coding Theory. In: Pless Jr., V.S., Huffman, W.C. (eds.), vol. II, ch.16. Elsevier, Amsterdam (1998)

    Google Scholar 

  5. Baur, W., Strassen, V.: The complexity of partial derivatives. Theor. Comp. Sci. 22, 317–330 (1982)

    Article  MathSciNet  Google Scholar 

  6. Beame, P., Brisson, E., Ladner, R.: The complexity of computing symmetric functions using threshold circuits. Theor. Comp. Sci. 100, 253–265 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beigel, R., Tarui, J.: On ACC. In: Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, pp. 783–792 (1991)

    Google Scholar 

  8. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. 15th Annual ACM Symposium on the Theory of Computing, pp. 80–86 (1983)

    Google Scholar 

  9. Dixon, J.D., Panario, D.: The degree of the splitting field of a random polynomial over a finite field. The Electronic Journal of Combinatorics 11(1) (2004), http://www.combinatorics.org/Volume_11/Abstracts/v11i1r70.html

  10. Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Sys. Thy. 17, 13–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grigoriev, D., Karpinski, M.: An exponential lower bound for depth 3 arithmetic circuits. In: Proc. 30th Annual ACM Symposium on the Theory of Computing, pp. 577–582 (1998)

    Google Scholar 

  12. Grigoriev, D., Razborov, A.: Exponential lower bounds for depth 3 algebraic circuits in algebras of functions over finite fields. Applicable Algebra in Engineering, Communication, and Computing 10, 465–487 (2000) (preliminary version FOCS 1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grolmusz, V.: Computing elementary symmetric polynomials with a sub-polynomial number of multiplications. SIAM Journal on Computing 32, 2002–02 (2002)

    MathSciNet  Google Scholar 

  14. Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree polynomials over prime fields. Random Struct. Algorithms 35(2), 163–193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM Journal on Computing 36(3), 779–802 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klinger, A.: The Vandermonde matrix. The American Mathematical Monthly 74(5), 571–574 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, C.J.: An exact characterization of symmetric functions in qAC0[2]. In: Proc. 4th International Combinatorics and Computing Conference, pp. 167–173 (1998)

    Google Scholar 

  18. Razborov, A.: Lower bounds for the size of circuits of bounded depth with basis { ∧ , ⊕ }. Mathematical Notes (formerly of the Academy of Natural Sciences of the USSR) 41, 333–338 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Razborov, A.: On the method of approximations. In: Proc. 21st Annual ACM Symposium on the Theory of Computing, pp. 167–176 (1989)

    Google Scholar 

  20. Shoup, V.: A computational introduction to number theory and algebra. Cambridge University Press, New York (2008)

    Google Scholar 

  21. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In: Proc. 19th Annual ACM Symposium on the Theory of Computing, pp. 77–82 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Lipton, R.J., Regan, K.W., Rudra, A. (2011). Symmetric Functions Capture General Functions. In: Murlak, F., Sankowski, P. (eds) Mathematical Foundations of Computer Science 2011. MFCS 2011. Lecture Notes in Computer Science, vol 6907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22993-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22993-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22992-3

  • Online ISBN: 978-3-642-22993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics